scholarly journals Inhibition of Eosinophil Rolling and Recruitment in P-Selectin– and Intracellular Adhesion Molecule-1–Deficient Mice

Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2847-2856 ◽  
Author(s):  
David H. Broide ◽  
David Humber ◽  
P. Sriramarao

To determine the relative in vivo importance of endothelial expressed adhesion molecules to eosinophil rolling, adhesion, and transmigration, we have induced eosinophilic peritonitis using ragweed allergen in P-selectin–deficient, intracellular adhesion molecule-1 (ICAM-1)–deficient and control wild-type mice. Circulating leukocytes visualized by intravital microscopy exhibited reduced rolling and firm adhesion in P-selectin–deficient mice and reduced firm adhesion in ICAM-1–deficient mice. Eosinophils exhibited reduced rolling and firm adhesion to endothelium in P-selectin–deficient mice. Eosinophil recruitment in P-selectin–deficient mice (∼75% inhibition of eosinophil recruitment) and ICAM-1–deficient mice (∼67% inhibition of eosinophil recruitment) was significantly reduced compared with wild-type mice. Eosinophil recruitment was not completely inhibited in P-selectin/ICAM-1 double-mutant mice (eosinophil recruitment inhibited ∼62%). However, pretreatment of P-selectin/ICAM-1–deficient mice with an anti-vascular cell adhesion molecule (VCAM) antibody induced near complete inhibition of eosinophil recruitment. Overall, these studies show that eosinophil rolling and firm adhesion is significantly reduced in P-selectin–deficient mice and that P-selectin, ICAM-1, and VCAM are important to eosinophil peritoneal recruitment after ragweed challenge.

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 263-269
Author(s):  
David H. Broide ◽  
Keith Campbell ◽  
Tim Gifford ◽  
P. Sriramarao

To determine the relative in vivo importance of IL-1 release after allergen challenge to the subsequent endothelial adhesion and recruitment of eosinophils, the authors used ovalbumin sensitization and inhalation challenge to induce airway eosinophilia in IL-1 receptor type 1-deficient and control wild-type mice. Bronchoalveolar lavage (BAL) eosinophil recruitment in IL-1 receptor type 1-deficient mice challenged with ovalbumin (24.3% ± 6.3% BAL eosinophils) was significantly reduced compared with wild-type mice (63.7% ± 2.5% BAL eosinophils). To determine whether the inhibition of eosinophil adhesion to vascular endothelium contributed to the inhibition of eosinophil recruitment in IL-1 receptor type 1-deficient mice, the authors used intravital microscopy to visualize the rolling and firm adhesion of fluorescence-labeled mouse eosinophils in the microvasculature of the allergen-challenged mouse mesentery. Eosinophil rolling, eosinophil firm adhesion to endothelium, and transmigration across endothelium (peritoneal eosinophils) were significantly inhibited in allergen-challenged IL-1 receptor type 1-deficient mice compared with wild-type mice. Overall, these studies demonstrate that cytokines such as IL-1, released after allergen challenge, are important in the induction of endothelial cell adhesiveness, a prerequisite for the recruitment of circulating eosinophils. (Blood. 2000;95:263-269)


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 263-269 ◽  
Author(s):  
David H. Broide ◽  
Keith Campbell ◽  
Tim Gifford ◽  
P. Sriramarao

Abstract To determine the relative in vivo importance of IL-1 release after allergen challenge to the subsequent endothelial adhesion and recruitment of eosinophils, the authors used ovalbumin sensitization and inhalation challenge to induce airway eosinophilia in IL-1 receptor type 1-deficient and control wild-type mice. Bronchoalveolar lavage (BAL) eosinophil recruitment in IL-1 receptor type 1-deficient mice challenged with ovalbumin (24.3% ± 6.3% BAL eosinophils) was significantly reduced compared with wild-type mice (63.7% ± 2.5% BAL eosinophils). To determine whether the inhibition of eosinophil adhesion to vascular endothelium contributed to the inhibition of eosinophil recruitment in IL-1 receptor type 1-deficient mice, the authors used intravital microscopy to visualize the rolling and firm adhesion of fluorescence-labeled mouse eosinophils in the microvasculature of the allergen-challenged mouse mesentery. Eosinophil rolling, eosinophil firm adhesion to endothelium, and transmigration across endothelium (peritoneal eosinophils) were significantly inhibited in allergen-challenged IL-1 receptor type 1-deficient mice compared with wild-type mice. Overall, these studies demonstrate that cytokines such as IL-1, released after allergen challenge, are important in the induction of endothelial cell adhesiveness, a prerequisite for the recruitment of circulating eosinophils. (Blood. 2000;95:263-269)


1997 ◽  
Vol 272 (2) ◽  
pp. L219-L229 ◽  
Author(s):  
J. E. Chin ◽  
C. A. Hatfield ◽  
G. E. Winterrowd ◽  
J. R. Brashler ◽  
S. L. Vonderfecht ◽  
...  

The involvement of the alpha4-integrin very late activation antigen 4 and vascular cell adhesion molecule-1 (VCAM-1) in leukocyte trafficking into the airways of ovalbumin (OA)-sensitized and OA-challenged mice was investigated using in vivo administration of anti-alpha4 monoclonal antibodies (mAb) PS/2, R1-2, and M/K-2.7 (MK2), specific for VCAM-1. VCAM-1 was upregulated on endothelial cells in lung tissue after OA inhalation. PS/2, R1-2, or MK2 significantly inhibited the recruitment of eosinophils and lymphocytes into the bronchoalveolar lavage (BAL) fluid and decreased inflammation in the lung tissues. Escalating in vivo doses of PS/2 or MK2 increased circulating levels of rat immunoglobulin G in the plasma. The binding of phycoerytherin-labeled anti-alpha4 mAb to blood T cells from PS/2-treated mice was reduced, implying that alpha4 sites were already occupied. T cells and eosinophils in BAL fluid from mice treated with PS/2 or MK2 were phenotypically different from controls. Selective decreases of alpha4+ T cells in the BAL fluid after PS/2 or MK2 treatment were coupled with changes in CD8+, CD11a, and CD62L expression. The alpha4-integrin and VCAM-1 may have important roles in the antigen-induced recruitment of T cells and eosinophils during OA-induced airway inflammation. The data suggest that these adhesion molecules may be suitable targets for therapeutic intervention in certain conditions of pulmonary inflammation.


2000 ◽  
Vol 192 (8) ◽  
pp. 1205-1212 ◽  
Author(s):  
May Ho ◽  
Michael J. Hickey ◽  
Allan G. Murray ◽  
Graciela Andonegui ◽  
Paul Kubes

Plasmodium falciparum–infected erythrocytes roll on and/or adhere to CD36, intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and P-selectin under shear conditions in vitro. However, the lack of an adequate animal model has made it difficult to determine whether infected erythrocytes do indeed interact in vivo in microvessels. Therefore, we made use of an established model of human skin grafted onto severe combined immunodeficient (SCID) mice to directly visualize the human microvasculature by epifluorescence intravital microscopy. In all grafts examined, infected erythrocytes were observed to roll and/or adhere in not just postcapillary venules but also in arterioles. In contrast, occlusion of capillaries by infected erythrocytes was noted only in approximately half of the experiments. Administration of an anti-CD36 antibody resulted in a rapid reduction of rolling and adhesion. More importantly, already adherent cells quickly detached. The residual rolling after anti-CD36 treatment was largely inhibited by an anti–ICAM-1 antibody. Anti–ICAM-1 alone reduced the ability of infected erythrocytes to sustain rolling and subsequent adhesion. These findings provide conclusive evidence that infected erythrocytes interact within the human microvasculature in vivo by a multistep adhesive cascade that mimics the process of leukocyte recruitment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 421-421
Author(s):  
Zurina Romay-Penabad ◽  
Guadalupe Montiel-Manzano ◽  
Elizabeth Pappalardo ◽  
Katherine A. Hajjar ◽  
Tuya Shilagard ◽  
...  

Abstract Background: Thrombosis is an important cause of morbidity and mortality in Antiphospholipid Syndrome (APS) and in SLE patients with antiphospholipid antibodies (aPL). APL recognize β2 glycoprotein I (β2GPI)-bound to receptor (s) in endothelial cells (EC) and other target cells (i.e. platelets, monocytes) and trigger an intracellular signalling and a pro-coagulant and pro-inflammatory phenotype [i e.expression of tissue factor (TF), vascular cell adhesion molecule-1 (VCAM-1)] that lead to thrombosis. There is in vitro evidence that annexin A2 (A2), a receptor for tissue plasminogen activator (tPA) and plasminogen – and possibly other proteins such as toll-like receptors or the receptor for apolipoprotein E2′ - may be binding β2GPI on the membrane of target cells. Here, we examined the involvement of A2 in aPL-mediated pathogenic effects in vivo. We studied the effects of aPL Abs on thrombus formation, VCAM-1 expression in aortas of mice, and TF function in carotid artery homogenates in annexin A2 deficient (−/−) mice. Methods: A2 (−/−) mice and the corresponding wild-type (WT) mice, in groups of 10, were injected i.p. twice (0 and 48 hours later) with IgG from a patient with APS (IgG-APS) or with control IgG (IgG-NHS). Seventy-two hours after the first injection, several procedures were done in each mice: dynamics of thrombus formation (thrombus size), TF function in homogenates of carotid arteries, and c) VCAM-1 expression in the aortas using quantum dot nano crystals and two-photon excitation laser scanning microscopy. In addition, we examined the effect of an anti-A2 antibody on aPL-induced expression of intercellular cell-adhesion molecule (ICAM-1), E-selectin and TF acvitity on cultured endothelial cells (EC). Results: The titers of aCL and anti-β2GPI Abs in the sera of the mice at the time of surgery were medium-high positive in A2 (−/−) mice and in wild type mice injected with IgG-APS. Thrombus sizes were significantly larger in WT mice injected with IgG-APS when compared to similar type of mice treated with IgG-NHS (p=0.003). The size of thrombus in A2 (−/−) mice injected with IgG-APS was significantly smaller than mean thrombus size in WT mice injected with IgG-APS (p:0.0005). However, thrombus size in A2 (−/−) mice was larger in mice injected with IgG-APS when compared to same type of mice treated with control IgG-NHS (p=0.003), indicating a partial but significant abrogation of the thrombogenic effect. TF activity was significantly larger in WT mice treated with IgG-APS when compared to mice injected with IgG-NHS. Importantly, TF activity in carotid arteries homogenates of annexin A2 (−/−) mice injected with IgG-APS was significantly decreased (by 52%) when compared to wild type mice treated with IgG-APS. The expression of VCAM-1 in aorta of annexin A2 (−/−) ex vivo was also significantly reduced compared to LPS-treated mice (positive control) (p= 0.01). Interestingly, anti-A2 antibody significantly decreased aPL-induced expression of ICAM-1, E-sel and TF on cultured EC. Conclusions: Altogether these data indicate for the first time that A2 is involved in vivo pathogenic effects of aPL Abs. These findings may have important implications to devise new targeted and more specific therapeutic approaches to block the pathogenic effects of aPL Abs in patients with APS and SLE.


Sign in / Sign up

Export Citation Format

Share Document