Inhibition of eosinophilic inflammation in allergen-challenged, IL-1 receptor type 1–deficient mice is associated with reduced eosinophil rolling and adhesion on vascular endothelium

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 263-269
Author(s):  
David H. Broide ◽  
Keith Campbell ◽  
Tim Gifford ◽  
P. Sriramarao

To determine the relative in vivo importance of IL-1 release after allergen challenge to the subsequent endothelial adhesion and recruitment of eosinophils, the authors used ovalbumin sensitization and inhalation challenge to induce airway eosinophilia in IL-1 receptor type 1-deficient and control wild-type mice. Bronchoalveolar lavage (BAL) eosinophil recruitment in IL-1 receptor type 1-deficient mice challenged with ovalbumin (24.3% ± 6.3% BAL eosinophils) was significantly reduced compared with wild-type mice (63.7% ± 2.5% BAL eosinophils). To determine whether the inhibition of eosinophil adhesion to vascular endothelium contributed to the inhibition of eosinophil recruitment in IL-1 receptor type 1-deficient mice, the authors used intravital microscopy to visualize the rolling and firm adhesion of fluorescence-labeled mouse eosinophils in the microvasculature of the allergen-challenged mouse mesentery. Eosinophil rolling, eosinophil firm adhesion to endothelium, and transmigration across endothelium (peritoneal eosinophils) were significantly inhibited in allergen-challenged IL-1 receptor type 1-deficient mice compared with wild-type mice. Overall, these studies demonstrate that cytokines such as IL-1, released after allergen challenge, are important in the induction of endothelial cell adhesiveness, a prerequisite for the recruitment of circulating eosinophils. (Blood. 2000;95:263-269)

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 263-269 ◽  
Author(s):  
David H. Broide ◽  
Keith Campbell ◽  
Tim Gifford ◽  
P. Sriramarao

Abstract To determine the relative in vivo importance of IL-1 release after allergen challenge to the subsequent endothelial adhesion and recruitment of eosinophils, the authors used ovalbumin sensitization and inhalation challenge to induce airway eosinophilia in IL-1 receptor type 1-deficient and control wild-type mice. Bronchoalveolar lavage (BAL) eosinophil recruitment in IL-1 receptor type 1-deficient mice challenged with ovalbumin (24.3% ± 6.3% BAL eosinophils) was significantly reduced compared with wild-type mice (63.7% ± 2.5% BAL eosinophils). To determine whether the inhibition of eosinophil adhesion to vascular endothelium contributed to the inhibition of eosinophil recruitment in IL-1 receptor type 1-deficient mice, the authors used intravital microscopy to visualize the rolling and firm adhesion of fluorescence-labeled mouse eosinophils in the microvasculature of the allergen-challenged mouse mesentery. Eosinophil rolling, eosinophil firm adhesion to endothelium, and transmigration across endothelium (peritoneal eosinophils) were significantly inhibited in allergen-challenged IL-1 receptor type 1-deficient mice compared with wild-type mice. Overall, these studies demonstrate that cytokines such as IL-1, released after allergen challenge, are important in the induction of endothelial cell adhesiveness, a prerequisite for the recruitment of circulating eosinophils. (Blood. 2000;95:263-269)


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2847-2856 ◽  
Author(s):  
David H. Broide ◽  
David Humber ◽  
P. Sriramarao

To determine the relative in vivo importance of endothelial expressed adhesion molecules to eosinophil rolling, adhesion, and transmigration, we have induced eosinophilic peritonitis using ragweed allergen in P-selectin–deficient, intracellular adhesion molecule-1 (ICAM-1)–deficient and control wild-type mice. Circulating leukocytes visualized by intravital microscopy exhibited reduced rolling and firm adhesion in P-selectin–deficient mice and reduced firm adhesion in ICAM-1–deficient mice. Eosinophils exhibited reduced rolling and firm adhesion to endothelium in P-selectin–deficient mice. Eosinophil recruitment in P-selectin–deficient mice (∼75% inhibition of eosinophil recruitment) and ICAM-1–deficient mice (∼67% inhibition of eosinophil recruitment) was significantly reduced compared with wild-type mice. Eosinophil recruitment was not completely inhibited in P-selectin/ICAM-1 double-mutant mice (eosinophil recruitment inhibited ∼62%). However, pretreatment of P-selectin/ICAM-1–deficient mice with an anti-vascular cell adhesion molecule (VCAM) antibody induced near complete inhibition of eosinophil recruitment. Overall, these studies show that eosinophil rolling and firm adhesion is significantly reduced in P-selectin–deficient mice and that P-selectin, ICAM-1, and VCAM are important to eosinophil peritoneal recruitment after ragweed challenge.


1999 ◽  
Vol 87 (6) ◽  
pp. 2357-2361 ◽  
Author(s):  
Constantinos Kyriakides ◽  
William Austen ◽  
Yong Wang ◽  
Joanne Favuzza ◽  
Lester Kobzik ◽  
...  

A significant role for the alternative complement pathway in acid aspiration has been demonstrated by the observation that C3 genetic knockout mice are protected from injury. Utilizing C5-deficient mice, we now test the role of the terminal complement components in mediating injury. Lung permeability in C5-deficient mice was 64% less than in wild-type animals and was similar to wild-type mice treated with soluble complement receptor type 1, which gave a 67% protection. Injury was fully restored in C5-deficient mice reconstituted with wild-type serum. The role of neutrophils was established in immunodepleted wild-type animals that showed a 58% protection. Injury was further reduced (90%) with the addition of soluble complement receptor type 1, indicating an additive effect of neutrophils and complement. Similarly, an additional protection was noted in C5-deficient neutropenic mice, indicating that neutrophil-mediated injury does not require C5a. Thus acid aspiration injury is mediated by the membrane attack complex and neutrophils. Neutrophil activity is independent of C5a.


2004 ◽  
Vol 286 (1) ◽  
pp. G110-G117 ◽  
Author(s):  
M. Storr ◽  
A. Sibaev ◽  
G. Marsicano ◽  
B. Lutz ◽  
V. Schusdziarra ◽  
...  

The effects of cannabinoid receptor agonists and antagonists on smooth muscle resting membrane potentials and on membrane potentials following electrical neuronal stimulation in a myenteric neuron/smooth muscle preparation of wild-type and cannabinoid receptor type 1 (CB1)-deficient mice were investigated in vitro. Double staining for CB1 and nitric oxide synthase (neuronal) was performed to identify the myenteric CB1-expressing neurons. Focal electrical stimulation of the myenteric plexus induced a fast (f) excitatory junction potential (EJP) followed by a fast and a slow (s) inhibitory junction potential (IJP). Treatment of wild-type mice with the endogenous CB1 receptor agonist anandamide reduced EJP while not affecting fIJP and sIJP. EJP was significantly higher in CB1-deficient mice than in wild-type littermate controls, and anandamide induced no effects in CB1-deficient mice. N-arachidonoyl ethanolamide (anandamide), R-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]- 1,4-benzoxazin-6-yl]-1-naphtalenylmethanone, a synthetic CB1 receptor agonist, nearly abolished EJP and significantly reduced the fIJP in wild-type mice. N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-caroxamide (SR141716A), a CB1-specific receptor antagonist, was able to reverse the agonist effects induced in wild-type mice. SR141716A, when given alone, significantly increased EJP in wild-type mice without affecting IJP in wild-type and EJP in CB1-deficient mice. Interestingly, SR141716A reduced fIJP in CB1-deficient mice. In the mouse colon, nitrergic myenteric neurons do not express CB1, implying that CB1 is expressed in cholinergic neurons, which is in line with the functional data. Finally, excitatory and inhibitory neurotransmission in the mouse colon is modulated by activation of CB1 receptors. The significant increase in EJP in CB1-deficient mice strongly suggests a physiological involvement of CB1 in excitatory cholinergic neurotransmission.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


2003 ◽  
Vol 94 (6) ◽  
pp. 2534-2544 ◽  
Author(s):  
Wieslaw Kozak ◽  
Anna Kozak

Male C57BL/6J mice deficient in nitric oxide synthase (NOS) genes (knockout) and control (wild-type) mice were implanted intra-abdominally with battery-operated miniature biotelemeters (model VMFH MiniMitter, Sunriver, OR) to monitor changes in body temperature. Intravenous injection of lipopolysaccharide (LPS; 50 μg/kg) was used to trigger fever in response to systemic inflammation in mice. To induce a febrile response to localized inflammation, the mice were injected subcutaneously with pure turpentine oil (30 μl/animal) into the left hindlimb. Oral administration (gavage) of N G-monomethyl-l-arginine (l-NMMA) for 3 days (80 mg · kg−1 · day−1in corn oil) before injection of pyrogens was used to inhibit all three NOSs ( N G-monomethyl-d-arginine acetate salt and corn oil were used as control). In normal male C57BL/6J mice, l-NMMA inhibited the LPS-induced fever by ∼60%, whereas it augmented fever by ∼65% in mice injected with turpentine. Challenging the respective NOS knockout mice with LPS and with l-NMMA revealed that inducible NOS and neuronal NOS isoforms are responsible for the induction of fever to LPS, whereas endothelial NOS (eNOS) is not involved. In contrast, none of the NOS isoforms appeared to trigger fever to turpentine. Inhibition of eNOS, however, exacerbates fever in mice treated with l-NMMA and turpentine, indicating that eNOS participates in the antipyretic mechanism. These data support the hypothesis that nitric oxide is a regulator of fever. Its action differs, however, depending on the pyrogen used and the NOS isoform.


2003 ◽  
Vol 77 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Michiko Tanaka ◽  
Hiroyuki Kagawa ◽  
Yuji Yamanashi ◽  
Tetsutaro Sata ◽  
Yasushi Kawaguchi

ABSTRACT In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between UL3 and UL4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the α0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1703-1711 ◽  
Author(s):  
Frederic Lluı́s ◽  
Josep Roma ◽  
Mònica Suelves ◽  
Maribel Parra ◽  
Gloria Aniorte ◽  
...  

Plasminogen activators urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are extracellular proteases involved in various tissue remodeling processes. A requirement for uPA activity in skeletal myogenesis was recently demonstrated in vitro. The role of plasminogen activators in skeletal muscle regeneration in vivo in wild-type, uPA-deficient, and tPA-deficient mice is investigated here. Wild-type and tPA−/− mice completely repaired experimentally damaged skeletal muscle. In contrast, uPA−/− mice had a severe regeneration defect, with decreased recruitment of blood-derived monocytes to the site of injury and with persistent myotube degeneration. In addition, uPA-deficient mice accumulated fibrin in the degenerating muscle fibers; however, the defibrinogenation of uPA-deficient mice resulted in a correction of the muscle regeneration defect. A similar severe regeneration deficit with persistent fibrin deposition was also reproducible in plasminogen-deficient mice after injury, suggesting that fibrinolysis by uPA-mediated plasminogen activation plays a fundamental role in skeletal muscle regeneration. In conclusion, the uPA-plasmin system is identified as a critical component of the mammalian skeletal muscle regeneration process, possibly because it prevents intramuscular fibrin accumulation and contributes to the adequate inflammatory response after injury. These studies demonstrate the requirement of an extracellular proteolytic cascade during muscle regeneration in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esther Pototskiy ◽  
Katherine Vinokuroff ◽  
Andrew Ojeda ◽  
C. Kendall Major ◽  
Deepak Sharma ◽  
...  

AbstractUnregulated neuro-inflammation mediates seizures in temporal lobe epilepsy (TLE). Our aim was to determine the effect of CD40–CD40L activation in experimental seizures. CD40 deficient mice (CD40KO) and control mice (wild type, WT) received pentenyltetrazole (PTZ) or pilocarpine to evaluate seizures and status epilepticus (SE) respectively. In mice, anti-CD40L antibody was administered intranasally before PTZ. Brain samples from human TLE and post-seizure mice were processed to determine CD40–CD40L expression using histological and molecular techniques. CD40 expression was higher in hippocampus from human TLE and in cortical neurons and hippocampal neural terminals after experimental seizures. CD40–CD40L levels increased after seizures in the hippocampus and in the cortex. After SE, CD40L/CD40 levels increased in cortex and showed an upward trend in the hippocampus. CD40KO mice demonstrated reduction in seizure severity and in latency compared to WT mice. Anti-CD40L antibody limited seizure susceptibility and seizure severity. CD40L–CD40 interaction can serve as a target for an immuno-therapy for TLE.


Sign in / Sign up

Export Citation Format

Share Document