Expression of Macrophage Inflammatory Protein-1 Receptors in Human CD34+ Hematopoietic Cells and Their Modulation by Tumor Necrosis Factor- and Interferon-γ

Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3073-3081 ◽  
Author(s):  
Jan Dürig ◽  
Erika A. de Wynter ◽  
Christoph Kasper ◽  
Michael A. Cross ◽  
James Chang ◽  
...  

Abstract Macrophage inflammatory protein-1 (MIP-1) can stimulate growth inhibitory and potent chemotactic functions in hematopoietic cells. To investigate whether the action of MIP-1 may be regulated at the cellular receptor level, we studied the expression and modulation of MIP-1 receptors on CD34+ cells isolated from normal bone marrow (NBM), umbilical cord blood (CB), and leukapheresis products (LP). Expression of MIP-1 receptors on CD34+cells was analyzed by two-color flow cytometry using a biotinylated MIP-1 molecule. The mean percentage of LP CD34+ cells expressing the MIP-1 receptors was 67.7 ± 7.2% (mean ± SEM; n = 22) as compared with 89.9 ± 2.6% (n = 10) and 74.69 ± 7.04% (n = 10) in CB and NBM, respectively (P = .4). The expression of the MIP-1 receptor subtypes on LP CD34+ cells was studied by indirect immunofluorescence using specific antibodies for the detection of CCR-1, CCR-4, and CCR-5. Microscopical examination revealed a characteristic staining of the cytoplasmic cell membrane for all three receptor subtypes. Detailed analysis of two LP samples showed that 65.8%, 4.4%, and 30.5% of CD34+ cells express CCR-1, CCR-4, and CCR-5, respectively. Culture of LP CD34+ cells for 24 to 36 hours in the presence of tumor necrosis factor- (TNF-) and interferon-γ (IFN-γ) resulted in a significant increase in MIP-1 receptor expression. TNF- induced MIP-1 receptor upregulation in a time- and concentration-dependent manner. Our results suggest that inhibitory cytokines produced by the bone marrow microenvironment are likely to be involved in the regulation of MIP-1 receptor expression on hematopoietic cells. © 1998 by The American Society of Hematology.

Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3073-3081 ◽  
Author(s):  
Jan Dürig ◽  
Erika A. de Wynter ◽  
Christoph Kasper ◽  
Michael A. Cross ◽  
James Chang ◽  
...  

Macrophage inflammatory protein-1 (MIP-1) can stimulate growth inhibitory and potent chemotactic functions in hematopoietic cells. To investigate whether the action of MIP-1 may be regulated at the cellular receptor level, we studied the expression and modulation of MIP-1 receptors on CD34+ cells isolated from normal bone marrow (NBM), umbilical cord blood (CB), and leukapheresis products (LP). Expression of MIP-1 receptors on CD34+cells was analyzed by two-color flow cytometry using a biotinylated MIP-1 molecule. The mean percentage of LP CD34+ cells expressing the MIP-1 receptors was 67.7 ± 7.2% (mean ± SEM; n = 22) as compared with 89.9 ± 2.6% (n = 10) and 74.69 ± 7.04% (n = 10) in CB and NBM, respectively (P = .4). The expression of the MIP-1 receptor subtypes on LP CD34+ cells was studied by indirect immunofluorescence using specific antibodies for the detection of CCR-1, CCR-4, and CCR-5. Microscopical examination revealed a characteristic staining of the cytoplasmic cell membrane for all three receptor subtypes. Detailed analysis of two LP samples showed that 65.8%, 4.4%, and 30.5% of CD34+ cells express CCR-1, CCR-4, and CCR-5, respectively. Culture of LP CD34+ cells for 24 to 36 hours in the presence of tumor necrosis factor- (TNF-) and interferon-γ (IFN-γ) resulted in a significant increase in MIP-1 receptor expression. TNF- induced MIP-1 receptor upregulation in a time- and concentration-dependent manner. Our results suggest that inhibitory cytokines produced by the bone marrow microenvironment are likely to be involved in the regulation of MIP-1 receptor expression on hematopoietic cells. © 1998 by The American Society of Hematology.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3290-3297 ◽  
Author(s):  
GM Crooks ◽  
DB Kohn

Gene transfer into human cells using murine amphotropic retroviral vectors is the basic technique used in most current gene therapy studies. The identity of the cell surface receptor for the amphotropic envelope remains unknown and thus its importance in gene transfer is poorly understood. We have measured specific retrovirus binding to cells to study amphotropic virus receptor regulation in human CD34+ bone marrow (BM) progenitors and primitive CD34+CD38- human hematopoietic cells. The rat monoclonal antibody 83A25 recognizes an epitope common to the envelope glycoprotein of all classes of Moloney murine leukemia virus. Indirect fluorescent labeling of 83A25 allows flow cytometric analysis of specific virus-cell interactions and is an indirect measure of specific receptors. Using this assay, amphotropic virus binding to fresh CD34+ cells was minimal. However, when CD34+ cells were cultured with or without growth factors for 4 days, specific binding of amphotropic retrovirus was readily shown. Inclusion of interleukin-3 (IL-3), IL-6, and Steel factor in cultures increased the fluorescence associated with amphotropic virus binding by twofold to four-fold (mean fold increase 2.7 +/- 0.84). Virus binding to CD34+CD38- cells was shown only in those cells culture in IL-3, IL-6, and Steel factor. These results suggest that certain cytokines may cause an increase in the number and/or affinity of amphotropic receptors on primitive human hematopoietic cells. Upregulation of viral receptor expression may be one of the mechanisms by which cytokines enhance gene transfer into primitive BM cells.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 605-611 ◽  
Author(s):  
Shao-bo Su ◽  
Naofumi Mukaida ◽  
Jian-bin Wang ◽  
Yi Zhang ◽  
Akiyoshi Takami ◽  
...  

Abstract Several lines of evidence indicate that macrophage inflammatory protein-1α (MIP-1α) modulates the proliferation of hematopoietic progenitor cells, depending on their maturational stages. To clarify the mechanisms for the modulation of hematopoiesis by this chemokine, we examined the expression of a receptor for MIP-1α, CCR1, on bone marrow cells of normal individuals using a specific antibody and explored the effects of MIP-1α on in vitro erythropoiesis driven by stem cell factor (SCF) and erythropoietin (Epo). CCR1 was expressed on glycophorin A-positive erythroblasts in addition to lymphocytes and granulocytes. CCR1+ cells, isolated from bone marrow mononuclear cells (BMMNCs) using a cell sorter, comprised virtually all erythroid progenitor cells in the BMMNCs. Moreover, MIP-1α inhibited, in a dose-dependent manner, colony formation by burst-forming unit-erythroid (BFU-E), but not by colony forming unit-erythroid (CFU-E), in a methylcellulose culture of purified human CD34+ bone marrow cells. Although reverse-transcription polymerase chain reaction (RT-PCR) showed the presence of CCR1, CCR4, and CCR5 transcripts in CD34+ cells in BM, anti-CCR1 antibodies significantly abrogated the inhibitory effects of MIP-1α on BFU-E formation both in a methylcellulose culture and in a single cell proliferation assay of purified CD34+ cells. Although the contribution of CCR4 or CCR5 cannot be completely excluded, these results suggest that MIP-1α–mediated suppression of the proliferation of immature, but not mature erythroid progenitor cells, is largely mediated by CCR1 expressed on these progenitor cells.


Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3290-3297 ◽  
Author(s):  
GM Crooks ◽  
DB Kohn

Abstract Gene transfer into human cells using murine amphotropic retroviral vectors is the basic technique used in most current gene therapy studies. The identity of the cell surface receptor for the amphotropic envelope remains unknown and thus its importance in gene transfer is poorly understood. We have measured specific retrovirus binding to cells to study amphotropic virus receptor regulation in human CD34+ bone marrow (BM) progenitors and primitive CD34+CD38- human hematopoietic cells. The rat monoclonal antibody 83A25 recognizes an epitope common to the envelope glycoprotein of all classes of Moloney murine leukemia virus. Indirect fluorescent labeling of 83A25 allows flow cytometric analysis of specific virus-cell interactions and is an indirect measure of specific receptors. Using this assay, amphotropic virus binding to fresh CD34+ cells was minimal. However, when CD34+ cells were cultured with or without growth factors for 4 days, specific binding of amphotropic retrovirus was readily shown. Inclusion of interleukin-3 (IL-3), IL-6, and Steel factor in cultures increased the fluorescence associated with amphotropic virus binding by twofold to four-fold (mean fold increase 2.7 +/- 0.84). Virus binding to CD34+CD38- cells was shown only in those cells culture in IL-3, IL-6, and Steel factor. These results suggest that certain cytokines may cause an increase in the number and/or affinity of amphotropic receptors on primitive human hematopoietic cells. Upregulation of viral receptor expression may be one of the mechanisms by which cytokines enhance gene transfer into primitive BM cells.


Sign in / Sign up

Export Citation Format

Share Document