Phosphatase inhibition promotes antiapoptotic but not proliferative signaling pathways in erythropoietin-dependent HCD57 cells

Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2084-2092
Author(s):  
Amy E. Lawson ◽  
Haifeng Bao ◽  
Amittha Wickrema ◽  
Sarah M. Jacobs-Helber ◽  
Stephen T. Sawyer

Erythropoietin (EPO) allows erythroid precursors to proliferate while protecting them from apoptosis. Treatment of the EPO-dependent HCD57 murine cell line with 70 μmol/L orthovanadate, a tyrosine phosphatase inhibitor, resulted in both increased tyrosine protein phosphorylation and prevention of apoptosis in the absence of EPO without promoting proliferation. Orthovanadate also delayed apoptosis in primary human erythroid progenitors. Thus, we investigated what survival signals were activated by orthovanadate treatment. Expression of Bcl-XL and BAD phosphorylation are critical for the survival of erythroid cells, and orthovanadate in the absence of EPO both maintained expression levels of antiapoptotic Bcl-XLand induced BAD phosphorylation at serine 112. Orthovanadate activated JAK2, STAT1, STAT5, the phosphatidylinositol-3 kinase (PI-3 kinase) pathway, and other signals such as JNK and p38 without activating the EPO receptor, JAK1, Tyk2, Vav, STAT3, and SHC. Neither JNK nor p38 appeared to have a central role in either apoptosis or survival induced by orthovanadate. Treatment with cells with LY294002, an inhibitor of PI-3 kinase activity, triggered apoptosis in orthovanadate-treated cells, suggesting a critical role of PI-3 kinase in orthovanadate-stimulated survival. Mitogen-activated protein kinase (MAPK) was poorly activated by orthovanadate, and inhibition of MAPK with PD98059 blocked proliferation without inducing apoptosis. Thus, orthovanadate likely acts to greatly increase JAK/STAT and PI-3 kinase basal activity in untreated cells by blocking tyrosine protein phosphatase activity. Activated JAK2/STAT5 then likely acts upstream of Bcl-XL expression and PI-3 kinase likely promotes BAD phosphorylation to protect from apoptosis. In contrast, MAPK/ERK activity correlates with only EPO-dependent proliferation but is not required for survival of HCD57 cells.

Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2084-2092 ◽  
Author(s):  
Amy E. Lawson ◽  
Haifeng Bao ◽  
Amittha Wickrema ◽  
Sarah M. Jacobs-Helber ◽  
Stephen T. Sawyer

Abstract Erythropoietin (EPO) allows erythroid precursors to proliferate while protecting them from apoptosis. Treatment of the EPO-dependent HCD57 murine cell line with 70 μmol/L orthovanadate, a tyrosine phosphatase inhibitor, resulted in both increased tyrosine protein phosphorylation and prevention of apoptosis in the absence of EPO without promoting proliferation. Orthovanadate also delayed apoptosis in primary human erythroid progenitors. Thus, we investigated what survival signals were activated by orthovanadate treatment. Expression of Bcl-XL and BAD phosphorylation are critical for the survival of erythroid cells, and orthovanadate in the absence of EPO both maintained expression levels of antiapoptotic Bcl-XLand induced BAD phosphorylation at serine 112. Orthovanadate activated JAK2, STAT1, STAT5, the phosphatidylinositol-3 kinase (PI-3 kinase) pathway, and other signals such as JNK and p38 without activating the EPO receptor, JAK1, Tyk2, Vav, STAT3, and SHC. Neither JNK nor p38 appeared to have a central role in either apoptosis or survival induced by orthovanadate. Treatment with cells with LY294002, an inhibitor of PI-3 kinase activity, triggered apoptosis in orthovanadate-treated cells, suggesting a critical role of PI-3 kinase in orthovanadate-stimulated survival. Mitogen-activated protein kinase (MAPK) was poorly activated by orthovanadate, and inhibition of MAPK with PD98059 blocked proliferation without inducing apoptosis. Thus, orthovanadate likely acts to greatly increase JAK/STAT and PI-3 kinase basal activity in untreated cells by blocking tyrosine protein phosphatase activity. Activated JAK2/STAT5 then likely acts upstream of Bcl-XL expression and PI-3 kinase likely promotes BAD phosphorylation to protect from apoptosis. In contrast, MAPK/ERK activity correlates with only EPO-dependent proliferation but is not required for survival of HCD57 cells.


Blood ◽  
2003 ◽  
Vol 101 (9) ◽  
pp. 3436-3443 ◽  
Author(s):  
Didier Bouscary ◽  
Frédéric Pene ◽  
Yann-Erick Claessens ◽  
Odile Muller ◽  
Stany Chrétien ◽  
...  

The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3–kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)–kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate–2 (IRS2), Src homology 2 domain–containing inositol 5′-phosphatase (SHIP), Grb2-associated binder–1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase–mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCFSKP2, which, in turn, down-regulates p27Kip1 cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.


Endocrinology ◽  
1997 ◽  
Vol 138 (8) ◽  
pp. 3103-3111 ◽  
Author(s):  
Masahide Ohmichi ◽  
Koji Koike ◽  
Akiko Kimura ◽  
Kanji Masuhara ◽  
Hiromasa Ikegami ◽  
...  

Abstract In this study, prostaglandin (PG) F2α was found to activate mitogen-activated protein (MAP) kinase and MAP kinase kinase (MEK) in cultured rat puerperal uterine myometrial cells. PGF2α stimulation also led to an increase in phosphorylation of raf-1, son of sevenless (SOS), and Shc. Furthermore, we examined the mechanism by which PGF2α induced MAP kinase phosphorylation. Both pertussis toxin (10 ng/ml), which inactivates Gi/Go proteins, and expression of a peptide derived from the carboxyl terminus of the β-adrenergic receptor kinase 1 (βARK1), which specifically blocks signaling mediated by the βγ subunits of G proteins, blocked the PGF2α-induced activation of MAP kinase. Ritodrine (1 μm), which is known to relax uterine muscle contraction, attenuated PGF2α-induced tyrosine phosphorylation of MAP kinase. Moreover, to examine the role of MAP kinase pathway in uterine contraction, an inhibitor of MEK activity, PD098059, was used. Although MEK inhibitor had no effect on PGF2α-induced calcium mobilization, this inhibitor partially inhibited PGF2α-induced uterine contraction. These results provide evidence that PGF2α stimulates the MAP kinase signaling pathway in cultured rat puerperal uterine myometrial cells through Gβγ protein, suggesting that this new pathway may play an important role in the biological action of PGF2α on these cells.


Sign in / Sign up

Export Citation Format

Share Document