Active GPIIb-IIIa conformations that link ligand interaction with cytoskeletal reorganization

Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2487-2495 ◽  
Author(s):  
Traci Heath Mondoro ◽  
Melanie McCabe White ◽  
Lisa K. Jennings

Abstract Glycoprotein (GP) IIb-IIIa plays a critical role in platelet aggregation and platelet-mediated clot retraction. This study examined the intramolecular relationship between GPIIb-IIIa activation and fibrinogen binding, platelet aggregation, and platelet-mediated clot retraction. To distinguish between different high-affinity activation states of GPIIb-IIIa, the properties of an antibody (D3) specific for GPIIIa that induces GPIIb-IIIa binding to adhesive protein molecules and yet completely inhibits clot retraction were used. Clot retraction inhibition by D3 was not due to altered platelet-fibrin interaction; however, combination treatments of D3 and adenosine diphosphate (ADP) inhibited full-scale aggregation and decreased the amounts of GPIIb-IIIa and talin incorporated into the core cytoskeletons. Morphologic evaluation of the D3/ADP aggregates showed platelets that were activated but to a lesser extent when compared to ADP only. ADP addition to platelets caused an increase in the number of D3 binding sites indicating that ligand had bound to the GPIIb-IIIa receptor. These data suggest that high-affinity GPIIb-IIIa– mediated ligand binding can be separated mechanistically from GPIIb-IIIa–mediated clot retraction and that clot retraction requires additional signaling through GPIIb-IIIa after ligand binding. The conformation recognized by D3 represents the expression of a GPIIb-IIIa activation state that participates in full-scale platelet aggregation, cytoskeletal reorganization, and clot retraction.

Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2487-2495
Author(s):  
Traci Heath Mondoro ◽  
Melanie McCabe White ◽  
Lisa K. Jennings

Glycoprotein (GP) IIb-IIIa plays a critical role in platelet aggregation and platelet-mediated clot retraction. This study examined the intramolecular relationship between GPIIb-IIIa activation and fibrinogen binding, platelet aggregation, and platelet-mediated clot retraction. To distinguish between different high-affinity activation states of GPIIb-IIIa, the properties of an antibody (D3) specific for GPIIIa that induces GPIIb-IIIa binding to adhesive protein molecules and yet completely inhibits clot retraction were used. Clot retraction inhibition by D3 was not due to altered platelet-fibrin interaction; however, combination treatments of D3 and adenosine diphosphate (ADP) inhibited full-scale aggregation and decreased the amounts of GPIIb-IIIa and talin incorporated into the core cytoskeletons. Morphologic evaluation of the D3/ADP aggregates showed platelets that were activated but to a lesser extent when compared to ADP only. ADP addition to platelets caused an increase in the number of D3 binding sites indicating that ligand had bound to the GPIIb-IIIa receptor. These data suggest that high-affinity GPIIb-IIIa– mediated ligand binding can be separated mechanistically from GPIIb-IIIa–mediated clot retraction and that clot retraction requires additional signaling through GPIIb-IIIa after ligand binding. The conformation recognized by D3 represents the expression of a GPIIb-IIIa activation state that participates in full-scale platelet aggregation, cytoskeletal reorganization, and clot retraction.


1991 ◽  
Vol 66 (06) ◽  
pp. 694-699 ◽  
Author(s):  
Marco Cattaneo ◽  
Benjaporn Akkawat ◽  
Anna Lecchi ◽  
Claudio Cimminiello ◽  
Anna M Capitanio ◽  
...  

SummaryPlatelet aggregation and fibrinogen binding were studied in 15 individuals before and 7 days after the oral administration of ticlopidine (250 mg b.i.d.). Ticlopidine significantly inhibited platelet aggregation induced by adenosine diphosphate (ADP), the endoperoxide analogue U46619, collagen or low concentrations of thrombin, but did not inhibit platelet aggregation induced by epinephrine or high concentrations of thrombin. Ticlopidine inhibited 125I-fibrinogen binding induced by ADP, U46619 or thrombin (1 U/ml). The ADP scavengers apyrase or CP/CPK, added in vitro to platelet suspensions obtained before ticlopidine, caused the same pattern of aggregation and 125I-fibrihogen binding inhibition as did ticlopidine. Ticlopidine did not inhibit further platelet aggregation and 125I-fibrinogen binding induced in the presence of ADP scavengers. After ticlopidine administration, thrombin or U46619, but not ADP, increased the binding rate of the anti-GPIIb/IIIa monoclonal antibody 7E3 to platelets. Ticlopidine inhibited clot retraction induced by reptilase plus ADP, but not that induced by thrombin or by reptilase plus epinephrine, and prevented the inhibitory effect of ADP, but not that of epinephrine, on the PGE1-induced increase in platelet cyclic AMP. The number of high- and low-affinity binding sites for 3H-ADP on formalin-fixed platelets and their K d were not modified by ticlopidine. These findings indicate that ticlopidine selectively inhibits platelet responses to ADP.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3824-3830 ◽  
Author(s):  
TH Mondoro ◽  
CD Wall ◽  
MM White ◽  
LK Jennings

Ligand-induced binding sites (LIBS) are neoantigenic regions of glycoprotein (GP)IIb-IIIa that are exposed upon interaction of the receptor with the ligand fibrinogen or the ligand recognition sequence (RGDS). LIBS have been suggested to contribute to postreceptor occupancy events such as full-scale platelet aggregation, adhesion to collagen, and clot retraction. This study examined the induction requirements of a GPIIIa LIBS with regard to ligand specificity. Through the use of the anti-LIBS D3, we report that this complex- activating antibody induces fibrinogen-and von Willebrand factor-binding to GPIIb-IIIa on intact platelets. Bound ligand was detected by flow cytometric analysis and platelet aggregation assays. These bound ligands increased the number of D3-binding sites and altered the affinity of D3 for GPIIb-IIIa on platelets. In contrast, activation of platelet GPIIb-IIIa by D3 did not increase the binding of another RGD- containing ligand, vitronectin. Furthermore, bound vitronectin on thrombin-stimulated platelets did not cause the expression of the D3 LIBS epitope. We conclude direct activation of GPIIb-IIIa in the absence of platelet activation results in selective ligand interaction and that D3 LIBS induction requires the binding of the multivalent ligands, fibrinogen or von Willebrand factor. Thus, the region of GPIIIa recognized by D3 may be an important regulatory domain in ligand- receptor interactions that directly mediate platelet aggregation.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 2017-2023 ◽  
Author(s):  
MH Ginsberg ◽  
AL Frelinger ◽  
SC Lam ◽  
J Forsyth ◽  
R McMillan ◽  
...  

Abstract Normal primary platelet aggregation requires agonist-mediated activation of membrane GPIIb-IIIa, binding of fibrinogen to GPIIb-IIIa, and cellular events after ligand binding. PAC1 monoclonal antibody distinguishes between resting and activated states of GPIIb-IIIa, and other antibodies preferentially recognize GPIIb (PMI-1) or IIIa (anti- LIBS1) after the binding of fibrinogen or fibrinogen-mimetic peptides, such as GRGDSP. Using these antibodies and platelet flow cytometry, we studied two distinct persistent platelet aggregation abnormalities. Platelets from a thrombasthenic variant, which contained near-normal amounts of GPIIb-IIIa, failed to aggregate or bind PAC1 in response to agonists. In addition, GRGDSP, which binds to normal GPIIb-IIIa without prior cell activation, failed to increase the binding of PMI-1 or anti- LIBS1 to the thrombasthenic platelets, suggesting a primary defect in ligand binding. Chromatography of detergent-solubilized platelets on a KYGRGDS affinity column confirmed that the patient's GPIIb-IIIa lacked the fibrinogen binding site. In another patient with myelofibrosis and defective aggregation, PAC1 failed to bind to adenosine diphosphate- stimulated platelets, but did bind when protein kinase C was directly activated with phorbol myristate acetate. Furthermore, the binding of PMI-1 and anti-LIBS1 increased in response to GRGDSP, confirming a defect in agonist-mediated fibrinogen receptor activation rather than in fibrinogen binding or events distal to binding. These studies indicate that this immunochemical approach is useful in classification of clinical abnormalities of platelet aggregation as defects in either (a) fibrinogen receptor activation, (b) fibrinogen binding, or (c) postoccupancy events.


1995 ◽  
Vol 74 (06) ◽  
pp. 1551-1556 ◽  
Author(s):  
Lisa K Jennings ◽  
Melanie M White ◽  
Timothy D Mandrell

SummaryWe examined interspecies differences in the function of the platelet fibrinogen receptor, GPIIb-IIIa, by comparing platelet aggregation responses to adenosine diphosphate (ADP) added alone or in combination with a GPIIIa specific monoclonal antibody (mAb), D3. D3 can activate the GPIIb-IIIa receptor in the absence of platelet activation, and it preferentially binds to a region on the GPIIIa subunit after the GPIIb-IIIa complex is occupied by ligand. Using human, monkey, dog, rabbit and pig platelets, we examined whether all species’ platelets bound the D3 mAb similarly, and if the binding of Arg-Gly-Asp-Ser (RGDS) peptides induced the exposure of the anti-LIBS (D3) epitope as previously described for human platelets. We also evaluated how blocking of this neoantigenic region by the D3 mAb affected clot retraction, a process that requires linkage of GPIIb-IIIa with fibrin(ogen) and the platelet cytoskeleton. We found that all species tested bound the D3 mAb. Only in human and monkey platelets did D3 cause aggregation as well as inhibit clot retraction. However, in all species tested, except for pig, D3 prevented disaggregation of platelets typically observed when platelets are treated with low dose ADP. With the exception of pig platelets, there was increased D3 binding to platelets in the presence of RGDS peptides. We propose that this region of GPIIIa is important in the conformational changes that GPIIb-IIIa undergoes during the binding of ligand in most species tested. Our studies suggest 1) there are measurable inter-species differences in GPIIb-IIIa mediated platelet aggregation and clot retraction, 2) LIBS expression due to receptor occupancy is a common but not all-inclusive response and 3) interspecies comparisons may be useful in understanding structural and functional aspects of platelet GPIIb-IIIa.


2019 ◽  
Vol 47 (4) ◽  
pp. 1731-1739 ◽  
Author(s):  
Jun Lu ◽  
Peng Hu ◽  
Guangyu Wei ◽  
Qi Luo ◽  
Jianlin Qiao ◽  
...  

Objective To investigate the role of alteplase, a widely-used thrombolytic drug, in platelet function. Methods Human platelets were incubated with different concentrations of alteplase followed by analysis of platelet aggregation in response to adenosine diphosphate (ADP), collagen, ristocetin, arachidonic acid or epinephrine using light transmittance aggregometry. Platelet activation and surface levels of platelet receptors GPIbα, GPVI and αIIbβ3 were analysed using flow cytometry. The effect of alteplase on clot retraction was also examined. Results This study demonstrated that alteplase significantly inhibited platelet aggregation in response to ADP, collagen and epinephrine in a dose-dependent manner, but it did not affect ristocetin- or arachidonic acid-induced platelet aggregation. Alteplase did not affect platelet activation as demonstrated by no differences in P-selectin levels and PAC-1 binding being observed in collagen-stimulated platelets after alteplase treatment compared with vehicle. There were no changes in the surface levels of the platelet receptors GPIbα, GPVI and αIIbβ3 in alteplase-treated platelets. Alteplase treatment reduced thrombin-mediated clot retraction. Conclusions Alteplase inhibits platelet aggregation and clot retraction without affecting platelet activation and surface receptor levels.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1545-1545
Author(s):  
Kelly Aylward ◽  
Marc Devocelle ◽  
Niamh Moran

Abstract The platelet-specific integrin αIIbβ3 plays a critical role in platelet aggregation and pathological thrombosis. Integrin affinity and ligand binding are regulated by the highly conserved αIIb membrane-proximal motif 989KVGFFKR995. We have recently shown that this motif is dependent on the presence of two phenylalanines (FF) for its activity. In order to investigate the role of KVGFFKR on integrin transmembrane signaling we used two parallel systems: (1) stable Chinese Hamster Ovary (CHO) cells expressing mutant αIIbβ3 integrins and (2) platelets treated with synthetic palmitylated (pal) peptides corresponding to the seven amino acid motif. In CHO cells, we chose cytoskeletal reorganization as a means to explore outside-in signaling. Alanine substitutions were introduced to the α-subunit KVGFFKR domain and co-expressed with wildtype β3. Cells were stably transfected with wildtype αIIb(992FF993)/β3, αIIb(992AA993)/β3 and αIIb (992AF993)/β3 to produce the FF, AA and AF cells respectively. Their ability to reorganize their cytoskeleton upon adhesion to fibrinogen was then determined. Even though double alanine substitution produced a constitutively activated integrin, the AA cells were unable to give rise to cytoskeletal reassembly as seen in the FF and AF cells. Using phalloidin as a marker, the AA cells displayed polymerized F-actin but failed to show the elaborate elongated stress fibers formed in the FF and AF cells. To further investigate the role of the KVGFFKR motif on downstream signaling events, we focused on using pal-peptides in platelets. We have shown that in addition to stimulating platelet aggregation presumably by facilitating the spatial separation of the integrin cytoplasmic tails, pal-KVGFFKR (pal-FF) induced tyrosine phosphorylation even in the absence of ligand (EDTA:5mM) or (ReoPro:10μg/ml). The tyrosine phosphoproteome associated with alanine-substituted peptides pal-KVGAFKR (pal-AF) and pal-KVGFAKR (pal-FA) was similar to that of pal-FF. However there is a remarkable absence of a specific 100kDa band (probably α-actinin) in the phosphoprotein profile in response to pal-KVGAAKR (pal-AA) both with peptide treatment alone and in the presence of TRAP. A closer look at ppFAK125 revealed that its tyrosine phosphorylation is also inhibited by pal-AA. Since α-actinin and ppFAK125 phosphorylation are closely linked events it supports α-actinin as the 100kDa missing phosphoprotein. However, pal-AA did not inhibit ppSyk72or ppSrc60 activation. Moreover pal-AA was identified as a potent antagonist, inhibiting platelet aggregation, PAC-1 binding and tyrosine phosphorylation. In summary, a double alanine substitution of the α-subunit membrane proximal domain disturbs cytoskeletal reorganization downstream, even though this substitution produces a constitutively activated integrin. This suggests a signaling role for the conserved α-integrin motif in addition to regulating integrin affinity. Furthermore in platelets, pal-FF peptide, by mimicking the endogenous αIIb KVGFFKR sequence can both activate the integrin and contribute to an intracellular signaling response even when ligand binding is absent. Taken together, both the stable cell system and pal-peptides in platelets support a role for the KVGFFKR domain in outside-in signaling. Also since pal-AA is an antagonist of integrin function it highlights the complexity of the proximal regulation of αIIbβ3 activation and suggests a dual role for this motif in integrin activation and intracellular signaling.


2001 ◽  
Vol 86 (07) ◽  
pp. 246-258 ◽  
Author(s):  
Lisa Nannizzi-Alaimo ◽  
K. S. Srinivasa Prasad ◽  
David Phillips

SummaryThe platelet integrin αIIbβ3 not only binds fibrinogen and von Willebrand factor to mediate platelet aggregation and adhesion, it also serves as a signaling receptor. Platelet agonists such as ADP, thrombin and collagen induce “inside-out” signaling which activates the receptor function of αIIbβ3 for soluble fibrinogen. Subsequent platelet aggregation leads to “outside-in” signaling, inducing platelet aggregate stabilization and triggering a variety of functions important to platelet physiology. This review focuses on the role of β3 tyrosine phosphorylation in αIIbβ3 outside-in signaling. Tyrosine phosphorylation of β3 in platelets is a dynamic process which is initiated upon platelet aggregation and also by adhesion of platelets to immobilized fibrinogen. Tyrosine phosphorylation occurs on the β3 integrin cytoplasmic tyrosine (ICY) domain, a conserved motif found in thesubunits of several integrins. β3 ICY domain tyrosine phosphorylation induces the recruitment of two proteins to the cytoplasmic domains of αIIbβ3: the cytoskeletal protein myosin, important to clot retraction; and the signaling adapter protein Shc, important to platelet stimulation. The critical role of β3 tyrosine phosphorylation to platelet function was established by the diYF mouse, a novel strain which expresses an αIIbβ3 in which the two β3 ICY domain tyrosines have been mutated to phenylalanine. These mice are selectively impaired in outside-in αIIbβ3 signaling, with defective aggregation and clot-retraction responses in vitro, and an in vivo bleeding defect which is characterized by a pronounced tendency to rebleed. Taken together, the data suggest that the β3 tyrosine phosphorylation signaling mechanism is important to αIIbβ3 function and might be applicable to a wide variety of integrin-mediated events.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3255-3255
Author(s):  
Jieqing Zhu ◽  
Won-Seok Choi ◽  
Joshua G. McCoy ◽  
Ana Negri ◽  
Jianghai Zhu ◽  
...  

Abstract Abstract 3255 The platelet αIIbβ3 integrin receptor plays a central role in hemostasis and thrombosis. Small molecule inhibitors of αIIbβ3 based on the RGD cell recognition sequence block ligand binding by interacting with αIIb D224 via their positively-charged (R-like) group and coordinating the Mg2+ ion in the metal ion adhesion site (MIDAS) via their carboxyl (D-like) group. We recently reported a novel inhibitor of αIIbβ3 (RUC-1) that binds exclusively to αIIb and we now report the structure-based design and synthesis of RUC-2 [2-amino-N-(3-(5-oxo-7-(piperazin-1-yl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-2-yl)phenyl)acetamide; MW 385], a RUC-1 derivative with ∼100-fold higher affinity and an IC50= ∼90 nM for ADP-induced platelet aggregation. RUC-2, like RUC-1 shows specificity for αIIbβ3 compared to αVβ3 and produces much less exposure of the β3 LIBS1 epitope than does eptifibatide (eptifibatide=100%, untreated platelets=22±3 %; RUC-2=21±3%). RUC-2 also produces less of a global conformational change in αIIbβ3 compared to eptifibatide as measured by dynamic light scattering, gel permeation chromatography, and electron microscopic imaging of αIIbβ3 in nanodiscs. X-ray crystallography of RUC-2 soaked into the αIIbβ3 headpiece in 1 mM Ca2+ and 5 mM Mg2+ at 2.6 Å revealed that RUC-2 binds to αIIb much the way RUC-1 does, but in addition it binds to one of the sidechain carboxyl oxygens of the β3 MIDAS residue Glu-220, thus displacing Mg2+ from the MIDAS. When RUC-2 was soaked into the crystal in the presence of 20 mM Mg2+, however, the Mg2+ was identified in the MIDAS and RUC-2 was absent from the pocket. Molecular dynamics simulations were in accord with the X-ray crystallographic data. Support for competition between RUC-2 and Mg2+ for binding to the MIDAS came from studies showing that increasing the Mg2+ concentration significantly decreased RUC-2's ability to inhibit PAC-1 binding to CHO cells expressing αIIbβ3, platelet adhesion to fibrinogen, and thrombin receptor activating peptide-induced platelet aggregation. We conclude that RUC-2 inhibits ligand binding with high affinity and specificity by a novel mechanism in which it competes with Mg2+ for Glu-220, and as such may offer advantages as a therapeutic agent. The binding pocket of RUC-2 in the closed αIIbβ3 headpiece crystal structure. αIIb and β3 are shown as solvent accessible surfaces. Ca2+ ions of SyMBS or ADMIDAS (yellow) are shown as spheres. RUC-2 and selected αIIbβ3 sidechain and backbone atoms are shown as sticks with green (RUC-2), light blue (αIIb), or wheat carbons (β3), red oxygens, blue nitrogens, and yellow sulphurs. Water molecules are small red spheres. Hydrogen and metal coordination bonds are shown as dashed blue lines. Disclosures: Coller: Centocor/Accumetrics/Rockefeller University: Royalty interests in abciximab/VerifyNow assays/RUC-1 and RUC-2.


Blood ◽  
1977 ◽  
Vol 49 (2) ◽  
pp. 185-196 ◽  
Author(s):  
BB Weksler ◽  
M Gillick ◽  
J Pink

Abstract Excessive reactivity of blood platelets may contribute to atherosclerotic vascular disease. Hence drugs which alter platelet function may be protective. Prompted by findings that propranolol therapy normalized hyperactive platelet aggregation in patients with coronary artery disease, we studied propranolol in vitro to assess its action on platelets. At concentrations similar to those achieved in vivo (0.1–1 muM), propranolol raised the thresholds for aggregation of some normal paltelets by adenosine diphosphate (ADP). At higher concentrations (10-50 muM), propranolol abolished the second wave of platelet aggregation induced by ADP and epinephrine, and inhibited aggregation induced by collagen, thrombin, and the ionophore A23187. Propanolol blocked the release of 14C-serotonin from platelets, inhibited platelet adhesion to collagen, and interfered with clot retraction. Propranolol blocked ionophore-induced uptake of 45Ca by platelets. Inhibition appeared unrelated to beta-adrenergic blockage, as d(+) propranolol (which lacks beta-blocking activity) was equipotent with 1(-) propranolol. Moreover, practolol, a beta-blockading drug which is nonlipophilic, did not inhibit platelet function. These studies suggested that propranolol, like local anesthetics, decreased platelet responsiveness by a direct action on the platelet membrane, possibly by interfering with calcium availability. Modulation of platelet function by propranolol may occur at concentrations achieved at usual clinical doses of the drug.


Sign in / Sign up

Export Citation Format

Share Document