Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches

Blood ◽  
2001 ◽  
Vol 97 (8) ◽  
pp. 2293-2299 ◽  
Author(s):  
Susan K. Nilsson ◽  
Hayley M. Johnston ◽  
Judi A. Coverdale

Abstract The spatial distribution of subpopulations of hemopoietic progenitor cells following syngeneic transplantation was investigated at the single-cell level. The location of infused hemopoietic progenitor cells within the femoral bone marrow of nonablated recipients was determined by 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester labeling of cells and in situ fixation by perfusion. Analysis performed over 15 hours after infusion demonstrated that the spatial distribution of transplanted marrow cells is not a random process. Although the majority of cells enter the bone marrow from the central marrow vessels, the subsequent localization within the bone marrow varied according to their phenotype. Candidate “stem cells” demonstrated selective redistribution and were significantly enriched within the endosteal region, whereas mature terminally differentiated and lineage-committed cells selectively redistributed away from the endosteal region and were predominantly in the central marrow region. Together, these data strongly support historical evidence of the presence of endosteal hemopoietic stem cell niches.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2338-2338
Author(s):  
Regina R Miftakhova ◽  
Andreas Hedblom ◽  
Anders Bredberg ◽  
Debra J Wolgemuth ◽  
Jenny L Persson

Abstract Abstract 2338 The molecules and cellular mechanisms that regulate pool size of hematopoietic stem cells and its association with stem cell niches to protect HSC from cell cycle-dependent injury are unclear. The cell cycle regulatory factor, cyclin A1 is overexpressed in patients with hematopoietic malignancies. Further, targeted overexpression of cyclin A1 in myeloid progenitor cells initiated acute myeloid leukemia in transgenic mice. In the present study, we investigated the role of cyclin A1 in controlling the HSC pool and its functional association with key molecules that regulate stem cell niches under steady-state conditions or following the cytokine stimulation or radiation exposure in vivo and in vitro. We reported that cyclin A1 null bone marrow displayed a significant increase in the frequency of stem cells (P<0,01) and increased expression of P27kip and increased phosphorylation of Akt at ser-473 site in HSCs and hematopoietic progenitors. We further showed that increased frequency and number of cyclin A1 null HSCs was associated with the increased expression BMP receptor type IA that is known as a key molecule controlling the HSC niche. In addition, cyclin A1 null HSCs exhibited increased ability to migrate as determined by in vitro migration assay, and bone marrow transplantation assay, and this correlated with the increased expression of MMP9, that is known for controlling the osteoblast cell expansion, and the accumulated nuclear localization of angiogenic and vascularization factor VEGFR2 in cyclin A1 null bone marrow cells. We also observed that IRSp53 that is a regulator for extracellular matrix signaling, was present in the nuclear compartments of cyclin A1 null bone marrow progenitor cells, but was absent in that of the wild-type controls. Further, flow cytometry and immunoblot analyses showed that cyclin A1 null HSCs and progenitor cells exhibited relatively resistant to TNF stimulation and the radiation exposure, and this was associated with the great increase in the expression of phosporylated of ser-473 Akt. Our findings suggest that the microenvironment may be altered in bone marrows from cyclin A1 null mice. Thus cyclin A1 may have important function in the decision of maintaining the HSC pools and protecting the HSCs and progenitors from exposure to the external agents by regulating the interaction between the HSCs/progenitor cells and bone marrow environment. Disclosures: No relevant conflicts of interest to declare.


1977 ◽  
Vol 145 (6) ◽  
pp. 1567-1579 ◽  
Author(s):  
S Abramson ◽  
RG Miller ◽  
RA Phillips

The precise relationship between the stem cells for the lymphoid system and those for the blood-forming system is unclear. While it is generally assumed that the hemopoietic stem cell, the spleen colony-forming unit (CFU-S), is also the stem cell for the lymphoid system, there is little evidence for this hypothesis. To investigate the stem cells in these two systems, we irradiated bone marrow cells to induce unique chromosome aberrations in the stem cell population and injected them at limiting dilution into stem cell-deficient recipients. Several months (between 3 and 11) were allowed for the injected cells to repopulate the hemopoietic system. At that time, the bone marrow, spleen, and thymus were examined for a high frequency of cells having the same unique chromosome aberration. The presence of such markers shows that the marker was induced in a cell with extensive proliferative capacity, i.e., a stem cell. In addition, the splenic lymphocytes were stimulated with phytohemagglutinin (PHA) or lipopolysaccharide (LPS) to search for unique chromosomes in dividing T and B cells, respectively. Finally, bone marrow cells were injected into secondary irradiated recipients to determine if the marker occurred in CFU-S and to determine whether or not the same tissue distributions of marked cells could be propogated by bone marrow cells in a second recipient. After examination of 28 primary recipients, it was possible to identify three unique patterns of stem cell regeneration. In one set of mice, a unique chromosome marker was observed in CFU-S and in PHA- and LPS-stimulated cultures. These mice provide direct evidence for a pluripotent stem cell in bone marrow. In addition, two restricted stem cells were identified by this analysis. In three recipients, abnormal karyotypes were found only in myeloid cells and not in B and T lymphocytes. These mice presumably received a marked stem cell restricted to differentiate only into myeloid progeny. In three other recipients, chromosome aberrations were found only in PHA-stimulated cells; CFU-S and cells from LPS cultures did not have cells with the unique chromosome. This pattern suggests that bone marrow contains cells committed to differentiation only into T lymphocytes. For each of the three types of stem cells, secondary recipients had the same cellular distribution of marked cells as the primary recipients. This observation provides further evidence that unique markers can be induced in both pluripotent and restricted stem cells.


2018 ◽  
Vol 19 (10) ◽  
pp. 2917 ◽  
Author(s):  
Diletta Overi ◽  
Guido Carpino ◽  
Vincenzo Cardinale ◽  
Antonio Franchitto ◽  
Samira Safarikia ◽  
...  

Two distinct stem/progenitor cell populations of biliary origin have been identified in the adult liver and biliary tree. Hepatic Stem/progenitor Cells (HpSCs) are bipotent progenitor cells located within the canals of Hering and can be differentiated into mature hepatocytes and cholangiocytes; Biliary Tree Stem/progenitor Cells (BTSCs) are multipotent stem cells located within the peribiliary glands of large intrahepatic and extrahepatic bile ducts and able to differentiate into hepatic and pancreatic lineages. HpSCs and BTSCs are endowed in a specialized niche constituted by supporting cells and extracellular matrix compounds. The actual contribution of these stem cell niches to liver and biliary tree homeostatic regeneration is marginal; this is due to the high replicative capabilities and plasticity of mature parenchymal cells (i.e., hepatocytes and cholangiocytes). However, the study of human liver and biliary diseases disclosed how these stem cell niches are involved in the regenerative response after extensive and/or chronic injuries, with the activation of specific signaling pathways. The present review summarizes the contribution of stem/progenitor cell niches in human liver diseases, underlining mechanisms of activation and clinical implications, including fibrogenesis and disease progression.


2007 ◽  
Vol 8 (1) ◽  
pp. 64
Author(s):  
N. Radukhina ◽  
O. Ilyinskaya ◽  
A. Kozlov ◽  
P. Rutkevich ◽  
T. Vlasik ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Geru Zhang ◽  
Qiwen Li ◽  
Quan Yuan ◽  
Shiwen Zhang

Stem cells play an irreplaceable role in the development, homeostasis, and regeneration of the craniofacial bone. Multiple populations of tissue-resident craniofacial skeletal stem cells have been identified in different stem cell niches, including the cranial periosteum, jawbone marrow, temporomandibular joint, cranial sutures, and periodontium. These cells exhibit self-renewal and multidirectional differentiation abilities. Here, we summarized the properties of craniofacial skeletal stem cells, based on their spatial distribution. Specifically, we focused on the in vivo genetic fate mapping of stem cells, by exploring specific stem cell markers and observing their lineage commitment in both the homeostatic and regenerative states. Finally, we discussed their application in regenerative medicine.


2020 ◽  
Vol 21 (2) ◽  
pp. 539
Author(s):  
Vitaly Vodyanoy ◽  
Oleg Pustovyy ◽  
Ludmila Globa ◽  
Randy J. Kulesza ◽  
Iryna Sorokulova

Stem cells are nurtured and regulated by a specialized microenvironment known as stem cell niche. While the functions of the niches are well defined, their structure and location remain unclear. We have identified, in rat bone marrow, the seat of hematopoietic stem cells—extensively vascularized node-like compartments that fit the requirements for stem cell niche and that we called hemmules. Hemmules are round or oval structures of about one millimeter in diameter that are surrounded by a fine capsule, have afferent and efferent vessels, are filled with the extracellular matrix and mesenchymal, hematopoietic, endothelial stem cells, and contain cells of the megakaryocyte family, which are known for homeostatic quiescence and contribution to the bone marrow environment. We propose that hemmules are the long sought hematopoietic stem cell niches and that they are prototypical of stem cell niches in other organs.


Blood ◽  
2013 ◽  
Vol 122 (14) ◽  
pp. 2346-2357 ◽  
Author(s):  
Jau-Yi Li ◽  
Jonathan Adams ◽  
Laura M. Calvi ◽  
Timothy F. Lane ◽  
M. Neale Weitzmann ◽  
...  

Key Points Ovariectomy expands short-term hemopoietic stem and progenitor cells and improves engraftment and host survival after bone marrow transplantation. T cells are required for ovariectomy to expand hemopoietic stem and progenitor cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1395-1395
Author(s):  
Morayma Reyes ◽  
Jeffrey S. Chamberlain

Abstract Multipotent Adult Progenitor Cells (MAPC) are bone marrow derived stem cells that can be extensively expanded in vitro and can differentiate in vivo and in vitro into cells of all three germinal layers: ectoderm, mesoderm, endoderm. The origin of MAPC within bone marrow (BM) is unknown. MAPC are believed to be derived from the BM stroma compartment as they are isolated within the adherent cell component. Numerous studies of bone marrow chimeras in human and mouse point to a host origin of bone marrow stromal cells, including mesenchymal stem cells. We report here that following syngeneic bone marrow transplants into lethally irradiated C57Bl/6 mice, MAPC are of donor origin. When MAPC were isolated from BM chimeras (n=12, 4–12 weeks post-syngeneic BM transplant from a transgenic mouse ubiquitously expressing GFP), a mixture of large and small GFP-positive and GFP-negative cells were seen early in culture. While the large cells stained positive for stroma cell markers (smooth muscle actin), mesenchymal stem cell makers (CD73, CD105, CD44) or macrophages (CD45, CD14), the small cells were negative for all these markers and after 30 cell doublings, these cells displayed the classical phenotype of MAPC (CD45−,CD105−, CD44−, CD73−, FLK-1+(vascular endothelial growth factor receptor 2, VEGFR2), Sca-1+,CD13+). In a second experiment, BM obtained one month post BM transplant (n=3) was harvested and mononuclear cells were sorted as GFP-positive and GFP-negative cells and were cultured in MAPC expansion medium. MAPC grew from the GFP-positive fraction. These GFP positive cells displayed the typical MAPC-like immunophenotypes, displayed a normal diploid karyotype and were expanded for more than 50 cell doublings and differentiated into endothelial cells, hepatocytes and neurons. To rule out the possibility that MAPC are the product of cell fusion between a host and a donor cell either in vivo or in our in vitro culture conditions, we performed sex mismatched transplants of female GFP donor BM cells into a male host. BM from 5 chimeras were harvested 4 weeks after transplant and MAPC cultures were established. MAPC colonies were then sorted as GFP-positive and GFP- negative and analyzed for the presence of Y-chromosome by FISH analysis. As expected all GFP-negative (host cells) contained the Y-chromosome whereas all GFP-positive cells (donor cells) were negative for the Y-chromosome by FISH. This proves that MAPC are not derived from an in vitro or in vivo fusion event. In a third study, BM mononuclear cells from mice that had been previously BM-transplanted with syngeneic GFP-positive donors (n=3) were transplanted into a second set of syngeneic recipients (n=9). Two months after the second transplant, BM was harvested and mononuclear cells were cultured in MAPC medium. The secondary recipients also contained GFP-positive MAPC. This is the first demonstration that BM transplantation leads to the transfer of cells that upon isolation in vitro generate MAPCs and, whatever the identity of this cell may be, is eliminated by irradiation. We believe this is an important observation as MAPC hold great clinical potential for stem cell and/or gene therapy and, thus, BM transplant may serve as a way to deliver and reconstitute the MAPC population. In addition, this study provides insight into the nature of MAPC. The capacity to be transplantable within unfractionated BM transplant renders a functional and physiological distinction between MAPC and BM stromal cells. This study validates the use of unfractionated BM transplants to study the nature and possible in vivo role of MAPC in the BM.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Sign in / Sign up

Export Citation Format

Share Document