Immunodominant epitopes on glycoprotein IIb-IIIa recognized by autoreactive T cells in patients with immune thrombocytopenic purpura

Blood ◽  
2001 ◽  
Vol 98 (1) ◽  
pp. 130-139 ◽  
Author(s):  
Masataka Kuwana ◽  
Junichi Kaburaki ◽  
Hidero Kitasato ◽  
Miyako Kato ◽  
Shinichi Kawai ◽  
...  

Abstract It was recently reported that autoreactive CD4+ T cells to glycoprotein IIb-IIIa (GPIIb-IIIa) mediate antiplatelet autoantibody production in patients with immune thrombocytopenic purpura (ITP). To further examine the antigenic specificity of the GPIIb-IIIa–reactive T cells, 6 recombinant fragments encoding different portions of GPIIbα or GPIIIa were generated and tested for their ability to stimulate antigen-specific T-cell proliferation and anti–GPIIb-IIIa antibody production in vitro. T cells from the peripheral blood of 25 patients with ITP and 10 healthy donors proliferated in response to recombinant GPIIb-IIIa fragments in various combinations. The amino-terminal portions of both GPIIbα and GPIIIa (IIbα18-259 and IIIa22-262) were frequently recognized (60% and 64%, respectively) compared with other fragments (4%-28%) in patients with ITP, but this tendency was not detected in healthy donors. In subsequent analyses in patients with ITP, T-cell reactivities to IIbα18-259 and IIIa22-262 were consistently detected, whereas those to other fragments were sometimes lost. In vitro antigenic stimulation of peripheral blood mononuclear cells with IIbα18-259 or IIIa22-262 promoted the synthesis of anti–GPIIb-IIIa antibodies in patients with ITP, but not in healthy donors. Of 15 CD4+ T-cell lines specific for platelet-derived GPIIb-IIIa generated from 5 patients with ITP, 13 lines recognized IIbα18-259, IIIa22-262, or both. T-cell lines reactive to IIbα18-259 or IIIa22-262 promoted the production of anti–GPIIb-IIIa antibodies that were capable of binding to normal platelet surfaces. These results indicate that the immunodominant epitopes recognized by pathogenic CD4+ T cells in patients with ITP are located within the amino-terminal portions of both GPIIbα and GPIIIa.

Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 621-623 ◽  
Author(s):  
Masataka Kuwana ◽  
Yutaka Kawakami ◽  
Yasuo Ikeda

The potential immunosuppressive effect of an anti-CD154 monoclonal antibody (mAb) on the pathogenic autoreactive T-cell response was evaluated using an in vitro culture system with glycoprotein IIb/IIIa (GPIIb/IIIa)–reactive T cells from patients with immune thrombocytopenic purpura (ITP). The anti-CD154 mAb did not inhibit T-cell proliferation, but suppressed anti-GPIIb/IIIa antibody production, in bulk peripheral blood mononuclear cell cultures stimulated with GPIIb/IIIa. Repeated antigenic stimulation of GPIIb/IIIa-reactive CD4+ T-cell lines in the presence of anti-CD154 mAb resulted in the loss of proliferative capacity and helper function for promoting anti-GPIIb/IIIa antibody production. These anergic T-cell lines showed a cytokine profile of low interferon γ and high interleukin 10 and suppressed anti-GPIIb/IIIa antibody production. Our results indicate that blockade of the CD40/CD154 interaction induces generation of autoantigen-specific anergic CD4+ T cells with regulatory function and could be a therapeutic option for suppressing pathogenic autoimmune responses in patients with ITP.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5118-5118
Author(s):  
Daniel Teschner ◽  
Eva Distler ◽  
Elke Schnuerer ◽  
Gregor Wenzel ◽  
Axl Neurauter ◽  
...  

Abstract Abstract 5118 Introduction Efficient methods for the reliable in vitro expansion of tumor-reactive T cells will surely broaden the applicability of adoptive T cell therapy in cancer. In this study we investigated the antigen-independent stimulation and expansion of human T cells in peripheral blood mononuclear cells (PBMC) and in long-term cultured tumor-reactive CD8+ T cell lines using superparamagnetic beads coated with antibodies to CD3 and the costimulatory molecules CD28 and CD137. Methods T cell numbers were measured in healthy donor PBMC after in vitro stimulation with Dynabeads® coated with CD3/CD28/CD137 versus Dynabeads® coated with CD3/CD28 (all beads +/- 100 U/mL IL-2) versus IL-2 alone at different bead/cell ratios (3:1, 1:1). Expansion was also analyzed in human renal cell carcinoma-reactive CD8+ T cell lines after restimulation with tumor cells (weekly), CD3/CD28 beads and CD3/CD28/CD137 beads, respectively (bead/cell ratio of 1:5, 100 U/mL IL-2 added). Expanded T cell lines were phenotyped for expression of activation, differentiation and homing molecules (i.e. CD27, CD28, CD45RA, CD45RO, CD57, CD62L, CD137, CCR7) and were also tested for function. Results T cells in PBMC showed an increased expansion rate of up to 17-fold during a 2-week culture period using beads with IL-2 added versus IL-2 alone (p<0.0001 for CD3/CD28/CD137; p<0.0001 for CD3/CD28). The difference between CD3/CD28/CD137 beads and CD3/CD28 beads was not significant (p=0.4). Bead/cell ratios of 1:1 and 3:1 expanded T cells in PBMC with similar efficiency. In addition, IL-2 was essential to obtain maximum T cell proliferation. Peripheral blood CD4+ and CD8+ T cells showed a strong increase of CD137 surface expression starting 12-24 hours upon stimulation, regardless which beads were used. In contrast to PBMC, tumor-reactive CD8+ T cell lines expanded more rapidly using CD3/CD28/CD137 beads versus CD3/CD28 beads (p=0.03). Stimulation with CD3/CD28/CD137 beads was comparably efficient versus the control arm using weekly addition of tumor cells and IL-2. Simultaneous addition of beads and tumor cells did not have a synergistic effect. CD8+ T cell lines analyzed 12 days after bead-induced in vitro expansion versus weekly tumor stimulation showed a comparable level of tumor reactivity in IFN-g ELISPOT assay. Phenotypically, expression of CD137 on CD8+ T cell lines showed maximum up-regulation 24 hours after beads stimulation and persisted for at least 72 hours. In contrast, cultures stimulated solely with tumor cells showed a much shorter and transient CD137 expression with an earlier peak level after 12 hours. Other phenotypic markers were similar on tumor-reactive T cell cultures, except for increased CD62L expression after bead-induced stimulation. Conclusion Antigen-independent in vitro expansion of T cells in PBMC was equally efficient using CD3/CD28 beads or CD3/CD28/CD137 beads, respectively. In contrast, we observed an increased growth rate for tumor-reactive CD8+ T cell lines when activated with CD3/CD28/CD137 beads compared to CD3/CD28 beads. Antitumor reactivity of T cell lines was maintained during the antigen-independent stimulation step. Bead activation was associated with increased expression of the lymph node homing receptor CD62L on antitumor CD8+ T cell lines, which indicates a central memory phenotype. Our data suggest that the conjugation of anti-CD137 antibodies to the traditionally used CD3/CD28 beads improves their expansion capacity for antitumor CD8+ T cell lines. Disclosures No relevant conflicts of interest to declare.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Daniil Shevyrev ◽  
Valeriy Tereshchenko ◽  
Elena Blinova ◽  
Nadezda Knauer ◽  
Ekaterina Pashkina ◽  
...  

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.


1983 ◽  
Vol 158 (2) ◽  
pp. 571-585 ◽  
Author(s):  
A Moretta ◽  
G Pantaleo ◽  
L Moretta ◽  
M C Mingari ◽  
J C Cerottini

In order to directly assess the distribution of cytolytic T lymphocytes (CTL) and their precursors (CTL-P) in the two major subsets of human T cells, we have used limiting dilution microculture systems to determine their frequencies. The two subsets were defined according to their reactivity (or lack thereof) with B9.4 monoclonal antibody (the specificity of which is similar, if not identical, to that of Leu 2b monoclonal antibody). Both B9+ and B9- cells obtained by sorting peripheral blood resting T cells using the fluorescence-activated cell sorter (FACS) were assayed for total CTL-P frequencies in a microculture system that allows clonal growth of every T cell. As assessed by a lectin-dependent assay, approximately 30% of peripheral blood T cells were CTP-P. In the B9+ subset (which represents 20-30% of all T cells), the CTL-P frequency was close to 100%, whereas the B9- subset had a 25-fold lower CTL-P frequency. It is thus evident that 90% and 10% of the total CTL-P in peripheral blood are confined to the B9+ or B9- T cell subsets, respectively. Analysis of the subset distribution of CTL-P directed against a given set of alloantigens confirmed these findings. CTL-P frequencies were also determined in B9+ and B9- subsets derived from T cells that had been activated in allogenic mixed leucocyte cultures (MLC). Approximately 10% of MLC T cells were CTL-P. This frequency was increased 3.5-fold in the B9+ subset, whereas the B9- subset contained only a small, although detectable number of CTL-P. Moreover, the great majority of the (operationally defined) CTL-P in MLC T cell population were found to be directed against the stimulating alloantigens, thus indicating a dramatic increase in specific CTL-P frequencies following in vitro stimulation in bulk cultures.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4225-4225
Author(s):  
Hussein Hamad ◽  
Wingchi K Leung ◽  
Spyridoula Vasileiou ◽  
Shivani Mukhi ◽  
Quillan Huang ◽  
...  

Myelodysplastic syndromes (MDS) are a heterogeneous group of disorders characterized by bone marrow failure and a propensity to progress to acute myeloid leukemia (AML). A core component of the underlying pathogenesis in MDS is deregulation of inflammatory cytokines, such as tumor growth factor-β (TGFβ), which impact the function of immune cells and hence their capacity to mount anti-infective or anti-tumor responses. However, little is known about antigen-specific T cell function in patients with MDS. We hypothesized that virus-specific T cell (VST) function might be preserved in patients with MDS, and that the functional capacity of T cells reactive against tumor-associated antigens aberrantly overexpressed by clonal MDS cells such as Cyclin A1 (CCNA1) and Proteinase (PR3) might also be preserved and exploited for immunotherapeutic purposes. Following informed consent, we collected peripheral blood samples from 10 patients (pts) with MDS and 17 healthy donors. Most pts (9 out of 10) were transfusion dependent and 3 subsequently underwent an allogeneic HSCT. Table 1 summarizes the other clinical characteristics, karyotypic and mutational profile at the time of blood collection. Compared with T cells isolated from healthy donors, MDS patient-derived T cells had a similar CD4 to CD8 ratio (1.5-2.5:1 for healthy donors and 3:1 for MDS pts), but displayed a more exhausted profile at baseline (CD3+TIM3+: 1% in healthy donors and 5% in MDS pts) and produced higher levels of inflammatory cytokines [IFNγ (18±3pg/ml vs 36±16pg/ml, healthy donor vs MDS; p=0.12), and IL-8 (56±32 vs 704±446 pg/ml, p=0.01)]. Next, to assess the capacity of MDS pts to mount ex vivo functional virus-directed responses, we stimulated patient-derived PBMCs (n=5) with overlapping peptide libraries (pepmixes) spanning immunogenic AdV, CMV, EBV, BK and HHV-6 antigens. Similar to healthy donor-derived T cell lines (n=5, 3 specific for 4 viruses and 2 for 5 viruses), all 5 MDS patient-derived lines demonstrated specificity for one or more of the target viruses (1 for 5 viruses, 1 for 4, 2 for 3 and 1 for 1 virus) as observed by IFNγ ELISpot assay with comparable magnitude (range Adv: 43-730 vs 384-941 in healthy donors, CMV: 0-1599 vs 0-3002, EBV: 0-1486 vs 0-541, BK: 0-839 vs 38-275 and HHV6: 0-794 vs 5-407 SFU/2x105 cells, respectively). We next examined the feasibility of expanding autologous MDS-antigen directed T cell products (n=10) to determine whether an adoptive immunotherapeutic approach might be applicable for MDS treatment. Thus, we exposed patient-derived PBMCs to autologous dendritic cells (DC) loaded with pepmixes spanning 6 MDS-associated antigens (CCNA1, survivin, WT1, PRAME, PR3 and NYESO1). After 3 rounds of stimulation, the products obtained were predominantly CD3+ T cells (mean 88±1.3%) that were polyclonal (CD4: 46±5% and CD8: 41±4%) containing predominantly memory T cells (TEM: 36±6% TCM: 37±5% and Tnaïve =13±3%). Six lines (60%) showed specific recognition to at least one of the target antigens: 4 lines specific for PRAME, 1 for CCNA1, 1 for WT1 and 1 for NYESO1 (range 0-40, 0-184, 0-1386 and 0-179 SFU/2x105 cells, respectively by IFNγ ELIspot). T cell lines were capable of specifically secreting multiple effector cytokines in response to targets (TNFα: 12% and IFNγ: 16% in response to PRAME in a representative patient-derived T cell line). Furthermore, this line was capable of killing PRAME+ targets in a 4hr 51Cr release assay [60% specific lysis, E:T 20:1]. In conclusion, functional virus-directed T cell immunity in patients with MDS is preserved, potentially explaining the lower rates of viral reactivation seen in these patients compared with other infections. Moreover, T cells specific for MDS-expressed tumor antigens can also be successfully expanded ex vivo from patients. Taken together this raises the possibility of applying an adoptive immunotherapeutic approach for the treatment of MDS. Disclosures Ramos: Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Research Funding. Leen:Allovir: Consultancy, Other: Cofounder, Ownership Interest; Marker Therapeutics: Consultancy, Other: Cofounder, Ownership Interest.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 663-679
Author(s):  
L Levitt ◽  
TJ Kipps ◽  
EG Engleman ◽  
PL Greenberg

The efficacy of four separate methods of human bone marrow T lymphocyte depletion was assessed, and the effect of T cells and monocytes on in vitro growth of marrow (CFU-GEMM, BFU-E, and CFU-GM) and peripheral blood (BFU-E) hematopoietic progenitors was determined. Extent of T cell depletion was assessed by multiparameter fluorescent cell sorter (FACS) analysis and by functional studies. Cells staining positively by FACS analysis for one or more of three separate fluorescent pan-T cell monoclonal antibodies (MCAbs) comprised 8.4% to 9.5% of control marrow mononuclear cells (MNCs). T cells constituted 3.2% to 5.1% of marrow following single, sequential, or combination treatment with two different pan-T cell MCAbs (Leu 1 and TM1) plus complement, 1.5% to 2.2% of marrow following solid-phase immunoabsorption (“panning”), 0.2% of marrow after sheep cell rosetting, and only 0.05% of marrow after FACS selective cell sorting and gated separation. T cells made up 59% to 73% of control peripheral blood MNCs and 0.8% to 2.8% of peripheral MNCs following sheep cell rosetting plus treatment with Leu 1 MCAb and complement. Mitogen (PHA, Con A) and allogeneic MLC-induced blastogenic responses (stimulation indices, experimental/control or E/C) revealed a concordant decrement in marrow T cell function after MCAb plus complement (E/C of 3.9 to 9.0), after panning (E/C of 1.6 to 3.5) and after sheep cell rosetting (E/C of 0.7 to 1.3), compared with control marrow (E/C of 5.3 to 15.7). After T cell depletion, marrow BFU-E growth was 95% to 120% of control, CFU-GM growth was 90% to 108% of control, and CFU-GEMM growth was 89% to 111% of control. Marrow T cell and/or monocyte depletion did not alter erythropoietin-dependent BFU-E growth in the absence of Mo-conditioned medium (81% to 95% of control), and the addition of as many as 50 to 100 X 10(3) purified marrow monocytes or T cells to 10(5) autologous nonadherent T cell-depleted marrow target cells had a negligible (P greater than .1) effect on marrow BFU-E growth in vitro. Peripheral blood (PB) BFU-E/10(5) T- depleted target cells were 106% +/- 19% of expected; PB BFU-E growth was significantly diminished after monocyte depletion alone (7% +/- 6% of expected) or after monocyte plus T cell depletion (8% +/- 4% of expected).(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2010 ◽  
Vol 115 (25) ◽  
pp. 5214-5221 ◽  
Author(s):  
Claudia P. Hernandez ◽  
Kevin Morrow ◽  
Lluis A. Lopez-Barcons ◽  
Jovanny Zabaleta ◽  
Rosa Sierra ◽  
...  

Abstract Adult patients with acute lymphoblastic T cell leukemia (T-ALL) have a very poor prognosis and few effective therapeutic options. Therefore, novel therapies that increase the efficacy of the treatments and that prolong T-ALL patient survival are needed. Malignant T cells require high concentrations of nutrients to sustain their increased rate of proliferation. In this study, we determined whether L-Arginine depletion by the pegylated form of the L-Arginine-metabolizing enzyme arginase I (peg-Arg I) impairs the proliferation of malignant T cells. Our results show that peg-Arg I depleted L-Arginine levels in vitro and in vivo. In addition, treatment of malignant T-cell lines with peg-Arg I significantly impaired their proliferation, which correlated with a decreased progression into the cell cycle, followed by the induction of apoptosis. Furthermore, peg-Arg I impaired the expression of cyclin D3, a fundamental protein in T-ALL proliferation, through a global arrest in protein synthesis. Injection of peg-Arg I plus chemotherapy agent Cytarabine prolonged survival in mice bearing T-ALL tumors. This antitumoral effect correlated with an inhibition of T-ALL proliferation in vivo, a decreased expression of cyclin D3, and T-ALL apoptosis. The results suggest the potential benefit of L-Arginine depletion by peg-Arg I in the treatment of T-cell malignancies.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2137-2142 ◽  
Author(s):  
RE Ware ◽  
TA Howard

Abstract In an attempt to identify and characterize T-lymphocyte immunoregulatory abnormalities in immune thrombocytopenic purpura (ITP), we have performed phenotypic and clonal analysis on peripheral T lymphocytes from 23 children with ITP. Quantitation of lymphocyte subpopulations showed that children with acute ITP had higher numbers of CD45RA+ and lower numbers of CD45RO+ T cells than children with chronic ITP or controls, but these differences may be age related. Analysis of T-cell receptor variable beta gene usage identified 2 boys with chronic ITP and elevated numbers of V beta 8+ T cells. Eight T- cell clones were established (6 CD4+, 4B4+ helper-inducer lines and 2 CD8+ lines) that showed in vitro proliferation against allogeneic platelets. The addition of autologous antigen-presenting cells enhanced the proliferation of six clones, but not for two clones that coexpressed natural killer (NK) markers. Four of seven positive clones also had measurable interleukin (IL)-2 secretion following platelet stimulation, providing further evidence for T-cell reactivity. Our results provide the first evidence that patients with ITP may have platelet-reactive T lymphocytes identifiable at the clonal level, supporting the hypothesis that autoreactive peripheral T lymphocytes may mediate or participate in the pathogenesis of this disorder.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Giovanna Cutrona ◽  
Nicolò Leanza ◽  
Massimo Ulivi ◽  
Giovanni Melioli ◽  
Vito L. Burgio ◽  
...  

Abstract This study shows that human postthymic T cells express CD10 when undergoing apoptosis, irrespective of the signal responsible for initiating the apoptotic process. Cells from continuous T-cell lines did not normally express CD10, but became CD10+ when induced into apoptosis by human immunodeficiency virus (HIV) infection and exposure to CD95 monoclonal antibody, etoposide, or staurosporin. Inhibitors of caspases blocked apoptosis and CD10 expression. Both CD4+ and CD8+ T cells purified from normal peripheral blood expressed CD10 on apoptotic induction. CD10 was newly synthesized by the apoptosing cells because its expression was inhibited by exposure to cycloheximide and CD10 mRNA became detectable by reverse transcription-polymerase chain reaction in T cells cultured under conditions favoring apoptosis. To show CD10 on T cells apoptosing in vivo, lymph node and peripheral blood T cells from HIV+ subjects were used. These suspensions were composed of a substantial, although variable, proportion of apoptosing T cells that consistently expressed CD10. In contrast, CD10+ as well as spontaneously apoptosing T cells were virtually absent in peripheral blood from normal individuals. Collectively, these observations indicate that CD10 may represent a reliable marker for identifying and isolating apoptosing T cells in vitro and ex vivo and possibly suggest novel functions for surface CD10 in the apoptotic process of lymphoid cells.


Gut ◽  
2015 ◽  
Vol 66 (3) ◽  
pp. 454-463 ◽  
Author(s):  
Daniele Mennonna ◽  
Cristina Maccalli ◽  
Michele C Romano ◽  
Claudio Garavaglia ◽  
Filippo Capocefalo ◽  
...  

ObjectivePatient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies.DesignWe undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions.ResultsSeveral unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+and CD4+T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo.ConclusionsThese results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.


Sign in / Sign up

Export Citation Format

Share Document