Ex vivo priming for long-term maintenance of antileukemia human cytotoxic T cells suggests a general procedure for adoptive immunotherapy

Blood ◽  
2001 ◽  
Vol 98 (12) ◽  
pp. 3359-3366 ◽  
Author(s):  
Daniela Montagna ◽  
Rita Maccario ◽  
Franco Locatelli ◽  
Vittorio Rosti ◽  
Young Yang ◽  
...  

Abstract Adoptive cellular immunotherapy has proven to be a successful approach in preventing and curing cytomegalovirus infection and Epstein-Barr virus–associated lymphomas after bone marrow transplantation. Translation of this approach for preventing leukemia relapse after bone marrow transplantation might require ex vivo priming and long-term maintenance of leukemia blast-specific T cells. To accomplish this goal, procedures were optimized for the in vitro priming of naive CD8 using dendritic cells activated by CD40 ligation, interleukin-12 (IL-12), and IL-7. Using T lymphocytes and dendritic cells obtained from HLA-matched allogeneic bone marrow transplantation donors and leukemia blasts as a source of tumor antigens, anti–acute myeloid leukemia cytotoxic T lymphocytes (CTLs) were induced. In these experiments, it was found that though it is possible to induce CTLs using immature dendritic cells, IL-12, and IL-7, obtaining long-term CTLs requires the presence of CD4 T cells in the priming phase. Using this approach, long-term antileukemia CTL lines could be generated from 4 of 4 bone marrow donors. Because this procedure does not require definition of the target antigen and because it selects responding cells from a virgin T-cell repertoire, its general application is suggested in adoptive immunotherapy and in the definition of tumor rejection antigens.

Blood ◽  
2008 ◽  
Vol 112 (6) ◽  
pp. 2232-2241 ◽  
Author(s):  
Jeff K. Davies ◽  
John G. Gribben ◽  
Lisa L. Brennan ◽  
Dongin Yuk ◽  
Lee M. Nadler ◽  
...  

AbstractWe report the outcomes of 24 patients with high-risk hematologic malignancies or bone marrow failure (BMF) who received haploidentical bone marrow transplantation (BMT) after ex vivo induction of alloantigen-specific anergy in donor T cells by allostimulation in the presence of costimulatory blockade. Ninety-five percent of evaluable patients engrafted and achieved full donor chimerism. Despite receiving a median T-cell dose of 29 ×106/kg, only 5 of 21 evaluable patients developed grade C (n = 4) or D (n = 1) acute graft-versus-host disease (GVHD), with only one attributable death. Twelve patients died from treatment-related mortality (TRM). Patients reconstituted T-cell subsets and immunoglobulin levels rapidly with evidence of in vivo expansion of pathogen-specific T cells in the early posttransplantation period. Five patients reactivated cytomegalovirus (CMV), only one of whom required extended antiviral treatment. No deaths were attributable to CMV or other viral infections. Only 1 of 12 evaluable patients developed chronic GVHD. Eight patients survive disease-free with normal performance scores (median follow-up, 7 years). Thus, despite significant early TRM, ex vivo alloanergization can support administration of large numbers of haploidentical donor T cells, resulting in rapid immune reconstitution with very few viral infections. Surviving patients have excellent performance status and a low rate of chronic GVHD.


1987 ◽  
Vol 5 (12) ◽  
pp. 1900-1911 ◽  
Author(s):  
C L Schwartz ◽  
C P Minniti ◽  
P Harwood ◽  
S Na ◽  
M L Banquerigo ◽  
...  

2'Deoxycoformycin (dCF) specifically inhibits adenosine deaminase (ADA) and causes selective cytotoxicity of normal and malignant T cells. In clinical trials, dCF caused rapid lysis of malignant T lymphoblasts. Although dCF has been associated with dose-limiting nonhematopoietic toxicities, myelosuppression has not been observed. Since dCF is relatively nontoxic to hematopoietic stem cells, we tested dCF for utility in the ex vivo purging of malignant T lymphoblasts from remission leukemic bone marrow for autologous bone marrow transplantation. We found that T lymphoblast cell lines were sensitive to dCF (plus deoxyadenosine [dAdo]) under conditions that did not ablate human hematopoietic colony-forming cells. Moreover, combined pharmacologic (dCF plus dAdo) and immunologic (anti-T cell monoclonal antibodies [McAb] plus complement) purging resulted in additive reduction in clonogenic T lymphoblasts. These results provide the basis for a clinical trial of bone marrow transplantation using combined pharmacologic/immunologic purging of T lymphoblasts from patients' harvested autologous marrow.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1333-1341 ◽  
Author(s):  
P Tiberghien ◽  
CW Reynolds ◽  
J Keller ◽  
S Spence ◽  
M Deschaseaux ◽  
...  

Abstract Allogeneic bone marrow transplantation (BMT) is associated with a severe complication--graft-versus-host disease (GVHD). Although effectively preventing GVHD, ex vivo T-lymphocyte marrow depletion unfortunately increases graft rejection and reduces the graft-versus- leukemia (GVL) effect. The ex vivo transfer of the herpes simplex thymidine kinase (HS-tk) suicide gene into T cells before their infusion with hematopoietic stem cells could allow for selective in vivo depletion of these T cells with ganciclovir (GCV) if subsequent GVHD was to occur. Thus, one could preserve the beneficial effects of the T cells on engraftment and tumor control in patients not experiencing severe GVHD. To obtain T cells specifically depleted by GCV, we transduced primary T cells with a retroviral vector containing the HS-tk and neomycin resistance (NeoR) genes. Gene transfer was performed by coculturing PHA +/- CD3- or alloantigen-stimulated purified T cells on an irradiated retroviral vector producer cell line or by incubating the T cells in supernatant from the producer. Subsequent culture in G418 for 1 week allowed for the selection of transduced cells. GCV treatment of interleukin-2-responding transduced and selected cells resulted in greater than 80% growth inhibition, whereas GCV treatment of control cells had no effect. Similarly, the allogeneic reactivity of HS-tk-transduced cells was specifically inhibited by GCV. Combining transduced and nontransduced T cells did not show a bystander effect, thus implying that all of the cells inhibited by GCV were indeed transduced. Lastly, studies involving the transduction of the HUT-78 (T-lymphoma) cell line suggest that stable expression of HS-tk can be maintained over 3 months in vitro in the absence of G418. In summary, we have established the feasibility of generating HS-tk-transduced T cells for subsequent in vivo transfer with hematopoietic stem cells and, if GVHD occurs, specific in vivo GCV- induced T-cell depletion in allogeneic BMT recipients.


2016 ◽  
Vol 38 (4) ◽  
pp. 1343-1353 ◽  
Author(s):  
Asmae Gassa ◽  
Halime Kalkavan ◽  
Fu Jian ◽  
Vikas Duhan ◽  
Vishal Khairnar ◽  
...  

Background: Graft versus host disease (GvHD) occurs in 20% of cases with patients having an MHC I matched bone marrow transplantation (BMT). Mechanisms causing this disease remain to be studied. Methods: Here we used a CD8+ T cell transgenic mouse line (P14/CD45.1+) and transgenic DEE mice bearing ubiquitously the glycoprotein 33-41 (GP33) antigen derived from the major lymphocytic choriomeningitis virus (LCMV) epitope to study mechanisms of tolerance in anti-host reactive CD8+ T cells after BMT. Results: We found that anti-host reactive CD8+ T cells (P14 T cells) were not negatively selected in the thymus and that they were present in wild type (WT) recipient mice as well as in DEE recipient mice. Anti-host reactive CD8+ T cells ignored the GP33 antigen expressed ubiquitously by host cells but they could be activated ex vivo via LCMV-infection. Lipopolysaccharides (LPS) induced transient cell damage in DEE mice bearing anti-host reactive CD8+ T cells after BMT, suggesting that induction of host inflammatory response could break antigen ignorance. Introducing the GP33 antigen into BM cells led to deletion of anti-host reactive CD8+ T cells. Conclusion: We found that after BMT anti-host reactive CD8+ T cells ignored host antigen in recipients and that they were only deleted when host antigen was present in hematopoietic cells. Moreover, LPS-induced immune activation contributed to induction of alloreactivity of anti-host reactive CD8+ T cells after BMT.


Sign in / Sign up

Export Citation Format

Share Document