scholarly journals Absence of complement component 3 does not prevent classical pathway–mediated hemolysis

2019 ◽  
Vol 3 (12) ◽  
pp. 1808-1814 ◽  
Author(s):  
Lingjun Zhang ◽  
Yang Dai ◽  
Ping Huang ◽  
Thomas L. Saunders ◽  
David A. Fox ◽  
...  

Abstract Complement component 3 (C3) is emerging as a potential therapeutic target. We studied complement-mediated hemolysis using normal and C3-depleted human sera, wild-type (WT) and C3-deficient rat sera, and WT and C3 knockout rat models. In all of the in vitro and in vivo experiments, we found that the loss of C3 did not prevent classical pathway–mediated hemolysis, but it did almost abolish alternative pathway–mediated hemolysis. Experiments using preassembled classical pathway C3 convertases confirmed that C4b2a directly activated complement component 5 (C5), leading to membrane attack complex formation and hemolysis. Our results suggest that targeting C3 should effectively inhibit hemolysis and tissue damage mediated by the alternative pathway of complement activation, but this approach might have limited efficacy in treating classical pathway–mediated pathological conditions.

1976 ◽  
Vol 144 (4) ◽  
pp. 1076-1093 ◽  
Author(s):  
R G Medicus ◽  
O Götze ◽  
H J Müller-Eberhard

In this study the physiological role of properdin and the differential subunit composition of the solid phase enzymes of the pathway have been explored. Cell-bound C3 and C5 convertase differ in their C3b requirement. Apparently one molecule of C3b is sufficient to allow formation of C3 convertase (C3b,B), whereas two or more are required for generation of C5 convertase (C3bn,B). This conclusion was drawn from results indicating the critical role of the spacial distribution of C3b molecules on the cell surface in enzyme formation. While the C3/C5 convertase is fully capable of acting on C5 and thereby initiating the assembly of the cytolytic membrane attack complex, it is exceedingly labile and vulnerable to destruction by the C3b inactivator. It is the apparent role of properdin to confer a degree of stability upon the labile enzyme and to protect its C3 convertase function against enzymatic destruction. To achieve these effects, precursor properdin (pre-P) is recruited in a binding-activation reaction by the labile C3/C5 convertase. Multiple C3b molecules appear to be needed for the formation of properdin-activating principle. Three modes of regulation have been described, which involve spontaneous dissociation enzymatic degradation by C3b inactivator and disassembly by beta1H. The functional differences of pre-P and activated properdin (P) were delineated, pre-P displaying a weak affinity for C3b and P the capacity of strong interaction, P generating a soluble C3 convertase in serum and pre-P being unable to do so. Because of the profound differences between native pre-P and the laboratory product P, the question was raised as to whether soluble P represents an unphysiological form of the protein. On the basis of this and other studies, the conclusion was reached that in vitro properdin recruitment constitutes the terminal event of the properdin pathway, and that properdin augments the function of C3/C5 convertase without changing its substrate specificity.


2008 ◽  
Vol 415 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Rudi A. Baron ◽  
Miguel C. Seabra

Prenylation (or geranylgeranylation) of Rab GTPases is catalysed by RGGT (Rab geranylgeranyl transferase) and requires REP (Rab escort protein). In the classical pathway, REP associates first with unprenylated Rab, which is then prenylated by RGGT. In the alternative pathway, REP associates first with RGGT; this complex then binds and prenylates Rab proteins. In the present paper we show that REP mutants defective in RGGT binding (REP1 F282L and REP1 F282L/V290F) are unable to compete with wild-type REP in the prenylation reaction in vitro. When over-expressed in cells, REP wild-type and mutants are unable to form stable cytosolic complexes with endogenous unprenylated Rabs. These results suggest that the alternative pathway may predominate in vivo. We also extend previous suggestions that GGPP (geranylgeranyl pyrophosphate) acts as an allosteric regulator of the prenylation reaction. We observed that REP–RGGT complexes are formed in vivo and are unstable in the absence of intracellular GGPP. RGGT increases the ability of REP to extract endogenous prenylated Rabs from membranes in vitro by stabilizing a soluble REP–RGGT–Rab-GG (geranylgeranylated Rab) complex. This effect is regulated by GGPP, which promotes the dissociation of RGGT and REP–Rab-GG to allow delivery of prenylated Rabs to membranes.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 401-401 ◽  
Author(s):  
MIchela Sica ◽  
Tommaso Rondelli ◽  
Patrizia Ricci ◽  
Maria De Angioletti ◽  
Antonio M Risitano ◽  
...  

Abstract C5-blockade with eculizumab prevents complement-mediated intravascular hemolysis in PNH patients and its clinical consequences. However, a distinct population of PNH red blood cells bound with C3 fragments appears in almost all treated patients. This C3 binding results in extravascular hemolysis that in some patients reduces the clinical benefit from eculizumab. In each PNH patients on eculizumab there are always two distinct populations of PNH red blood cells, one with (C3+) and one without (C3-) C3 binding. This phenomenon is somehow paradoxical since the glycosylphosphatidylinositol (GPI)-linked complement regulators, CD55 and CD59, are uniformly deficient on the surface of PNH red cells. To investigate this phenomenon, we have modeled in vitro the C3 binding in the context of C5 blockade by incubating red blood cells from PNH patients with AB0-matched sera from patients on eculizumab. Complement alternative pathway has been activated by mild acidification (in presence of Mg/EGTA to prevent the activation of complement classical pathway) and C3 binding has been assessed by flow cytometry at serial time points. In these experimental conditions a fraction of PNH red blood cells, similar to what happens in vivo, become promptly C3+ and its size increases with the time: from 9.4±2.7% after 5 minutes to 21.2±9.5% after 24 hours. The membrane defects of PNH cells suggested that the deficiency of CD55, which regulates the formation and accelerates the dissociation of C3 convertases, should be responsible for C3 binding to PNH red blood cells in presence of eculizumab (Parker CJ. Hematology Am Soc Hematol Educ Program. 2011;2011:21-29). In order to verify experimentally this hypothesis we have inactivated CD55 or CD59 on normal red blood cells by using blocking monoclonal antibodies (moAb - listed in the figure legend), and we have tested them in vitro upon activation of complement alternative pathway by mild acidification in presence or absence of C5 blockade. We found that CD55 inactivation on normal red blood cells results neither in hemolysis (without C5 blockade) nor in any C3 binding (with C5 blockade). As expected without C5 blockade CD59-inactivated normal red blood cells undergo hemolysis but, surprisingly, we found that in presence of C5 blockade they become bound with C3 fragments (Figure 1), just as it occurs in vivo in PNH patients on eculizumab. The simultaneous inactivation of both CD55 and CD59 further increased the level of C3 binding. Thus, at variance with the starting hypothesis, the deficiency of CD59, not that of CD55, plays the major role in C3 binding to PNH red cells of patients on eculizumab. Therapeutic C5 blockade in PNH patients has unmasked a novel function of CD59: in addition to prevent MAC formation, it plays a central role also in the regulation of C3 activation on cell surface through molecular mechanisms not elucidated yet. It remains to be established the physiological role, if any, of this novel function of CD59 and whether it play a role in determining the pleomorphic clinical features of the congenital CD59 deficiency. Finally, these findings may lead to investigate innovative approaches to reduce C3 binding and extravascular hemolysis in PNH patients on eculizumab and, in a broader context, to modulate complement activity. Figure 1 Figure 1. Disclosures Risitano: Novartis: Research Funding; Alexion Pharmaceuticals: Other: lecture fees, Research Funding; Rapharma: Research Funding; Alnylam: Research Funding.


2002 ◽  
Vol 70 (2) ◽  
pp. 551-557 ◽  
Author(s):  
Joanna Warren ◽  
Pietro Mastroeni ◽  
Gordon Dougan ◽  
Mahdad Noursadeghi ◽  
Jonathan Cohen ◽  
...  

ABSTRACT The role of the complement system in host defense against Salmonella infection is poorly defined. Bacterial cell wall O-antigen polysaccharide can activate the alternative pathway in vitro. No studies, however, have elucidated the role of the classical pathway in immunity to Salmonella spp. in vivo. C1q-deficient mice (C1qa −/−) on a 129/Sv genetic background and strain-matched controls were infected intraperitoneally and intravenously with Salmonella enterica serovar Typhimurium and monitored over a 14-day period. After inoculation by either route, the C1qa −/− mice were found to be significantly more susceptible to Salmonella infection. Hepatic and splenic bacterial counts, performed at various time points, showed increased numbers of colonies in complement-deficient mice compared to controls. Analysis of blood clearance showed no difference between the two experimental groups during the first 15 min. However, after 20 min and until 6 h postinfection, numbers of circulating bacteria were significantly higher in complement-deficient mice. In vitro experiments using either resident or thioglycolate-elicited peritoneal macrophages showed a significant increase in the number of bacteria inside C1q-deficient macrophages compared to controls irrespective of the serum used for opsonizing the bacteria. These findings could not be explained either by an increased bacterial uptake, analyzed in vitro and in vivo using green fluorescent protein-tagged salmonellae, or by a defect in the respiratory burst or in NO production. The data presented here suggest the possibility of novel pathways by which C1q may modulate the pathogenesis of infectious diseases caused by intracellular pathogens.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4544-4549 ◽  
Author(s):  
Hector Molina ◽  
Takashi Miwa ◽  
Lin Zhou ◽  
Brendan Hilliard ◽  
Dimitrios Mastellos ◽  
...  

The role of complement in the pathogenesis of autoimmune hemolytic anemia (AIHA) has been controversial and may depend on a number of factors, including the affinity and isotype of the pathogenic antibodies involved. We have recently shown that mouse erythrocytes deficient in the membrane C3 regulatory protein, complement receptor 1–related gene/protein y (Crry), but not decay-accelerating factor (DAF), were spontaneously eliminated in vivo by complement. Here, by generating a mouse deficient in both DAF and Crry, we further delineated the roles of Crry and DAF in regulating alternative and classical pathway C3 activation. By using immunoglobulin-, Fcγ receptor (FcγR)–, C3-, C4-, and C5-deficient mice, we also determined the mechanism by which membrane C3 regulator-deficient erythrocytes are cleared from the circulation. Finally, we evaluated the relative importance of the Fc receptor versus the complement pathway in disposing antibody-opsonized DAF/Crry–deficient erythrocytes. We conclude that (1) Crry plays a more dominant role than DAF in regulating the alternative pathway of complement, whereas DAF and Crry are equally effective in preventing antibody-induced runaway complement activation on mouse erythrocytes; (2) DAF/Crry–deficient erythrocytes are eliminated by the alternative pathway of complement via complement receptor–mediated erythrophagocytosis in the spleen; and (3) when opsonized with an immunoglobulin G2a (IgG2a) autoantibody, Crry/DAF–deficient erythrocytes are eliminated more rapidly by complement than by the Fc receptor pathway. These results shed new light on the relative activities of Crry and DAF and underscore the critical roles of membrane C3 regulators in preventing spontaneous and antibody-induced erythrocyte damage in vivo.


2018 ◽  
Vol 1 (1) ◽  
pp. 43-62 ◽  
Author(s):  
Sofiya Matviykiv ◽  
Marzia Buscema ◽  
Gabriela Gerganova ◽  
Tamás Mészáros ◽  
Gergely Tibor Kozma ◽  
...  

Liposomal drug delivery systems can protect pharmaceutical substances and control their release. Systemic administration of liposomes, however, often activate the innate immune system, resulting in hypersensitivity reactions. These pseudo-allergic reactions can be interpreted as activating the complement system. Complement activation destroys and eliminates foreign substances, either directly through opsonization and the formation of the membrane attack complex (MAC), or by activating leukocytes and initiating inflammatory responses via mediators, such as cytokines. In this study, we investigated the in vitro immune toxicity of the recently synthesized Rad-PC-Rad liposomes, analyzing the liposome-induced complement activation. In five human sera, Rad-PC-Rad liposomes did not induce activation, but in one serum high sensitivity via alternative pathway was detected. Such a behavior in adverse phenomena is characteristic for patient-to-patient variation and, thus, the number of donors should be in the order of hundreds rather than tens, hence the present study based on six donors is preliminary. In order to further prove the suitability of mechano-responsive Rad-PC-Rad liposomes for clinical trials, the production of pro-inflammatory cytokines was examined by human white blood cells. The concentrations of the pro-inflammatory cytokines, IL-6, IL-12p70, TNF-α, and IL-1β, induced by Rad-PC-Rad liposomal formulations, incubated with whole blood samples, were smaller or comparable to saline (negative control). Because of this favorable in vitro hemo-compatibility, in vivo investigations using these mechano-responsive liposomes should be designed.


1997 ◽  
Vol 52 (1-2) ◽  
pp. 60-64 ◽  
Author(s):  
P. Georgieva ◽  
N. Ivanovska ◽  
V. Bankova ◽  
S. Popov

Abstract Several phenolic constituents of propolis and their synthetic analogs were derivatized with ʟ-lysine. The ability of these complexes to alter complement activity was estimated in vitro in human serum. The influence of selected complexes on C3 hemolytic activity via classical pathway (CP) and alternative pathway (AP) and on zymosan-induced AP activation was determined. The results suppose that the anticomplement effect of the complexes might be related to the interaction with C3 complement component.


Blood ◽  
2010 ◽  
Vol 115 (11) ◽  
pp. 2283-2291 ◽  
Author(s):  
Margaret A. Lindorfer ◽  
Andrew W. Pawluczkowycz ◽  
Elizabeth M. Peek ◽  
Kimberly Hickman ◽  
Ronald P. Taylor ◽  
...  

Abstract The clinical hallmark of paroxysmal nocturnal hemoglobinuria (PNH) is chronic intravascular hemolysis that is a consequence of unregulated activation of the alternative pathway of complement (APC). Intravascular hemolysis can be inhibited in patients by treatment with eculizumab, a monoclonal antibody that binds complement C5 thereby preventing formation of the cytolytic membrane attack complex of complement. However, in essentially all patients treated with eculizumab, persistent anemia, reticulocytosis, and biochemical evidence of hemolysis are observed; and in a significant proportion, their PNH erythrocytes become opsonized with complement C3. These observations suggest that PNH patients treated with eculizumab are left with clinically significant immune-mediated hemolytic anemia because the antibody does not block APC activation. With a goal of improving PNH therapy, we characterized the activity of anti-C3b/iC3b monoclonal antibody 3E7 in an in vitro model of APC-mediated hemolysis. We show that 3E7 and its chimeric-deimmunized derivative H17 block both hemolysis and C3 deposition on PNH erythrocytes. The antibody is specific for the APC C3/C5 convertase because classical pathway–mediated hemolysis is unaffected by 3E7/H17. These findings suggest an approach to PNH treatment in which both intravascular and extravascular hemolysis can be inhibited while preserving important immune functions of the classical pathway of complement.


2002 ◽  
Vol 277 (51) ◽  
pp. 49782-49790 ◽  
Author(s):  
Agueda Rostagno ◽  
Tamas Revesz ◽  
Tammaryn Lashley ◽  
Yasushi Tomidokoro ◽  
Laura Magnotti ◽  
...  

Chromosome 13 dementias, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with neurodegeneration and cerebrovascular amyloidosis, with striking neuropathological similarities to Alzheimer's disease (AD). Despite the structural differences among the amyloid subunits (ABri in FBD, ADan in FDD, and Aβ in AD), these disorders are all characterized by the presence of neurofibrillary tangles and parenchymal and vascular amyloid deposits co-localizing with markers of glial activation, suggestive of local inflammation. Proteins of the complement system and their pro-inflammatory activation products are among the inflammation markers associated with AD lesions. Immunohistochemistry of FBD and FDD brain sections demonstrated the presence of complement activation components of the classical and alternative pathways as well as the neo-epitope of the membrane attack complex. Hemolytic experiments and enzyme-linked immunosorbent assays specific for the activation products iC3b, C4d, Bb, and C5b-9 indicated that ABri and ADan are able to fully activate the complement cascade at levels comparable to those generated by Aβ1–42. ABri and ADan specifically bound C1q with high affinity and formed stable complexes in physiological conditions. Activation proceeds ∼70–75% through the classical pathway while only ∼25–30% seems to occur through the alternative pathway. The data suggest that the chronic inflammatory response generated by the amyloid peptidesin vivomight be a contributing factor for the pathogenesis of FBD and FDD and, in more general terms, to other neurodegenerative conditions.


Sign in / Sign up

Export Citation Format

Share Document