scholarly journals CD59 Deficiency Is Critical for C3 Binding on Red Blood Cells of Patients with Paroxysmal Nocturnal Hemoglobinuria (PNH) during Anti-C5 Treatment (eculizumab)

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 401-401 ◽  
Author(s):  
MIchela Sica ◽  
Tommaso Rondelli ◽  
Patrizia Ricci ◽  
Maria De Angioletti ◽  
Antonio M Risitano ◽  
...  

Abstract C5-blockade with eculizumab prevents complement-mediated intravascular hemolysis in PNH patients and its clinical consequences. However, a distinct population of PNH red blood cells bound with C3 fragments appears in almost all treated patients. This C3 binding results in extravascular hemolysis that in some patients reduces the clinical benefit from eculizumab. In each PNH patients on eculizumab there are always two distinct populations of PNH red blood cells, one with (C3+) and one without (C3-) C3 binding. This phenomenon is somehow paradoxical since the glycosylphosphatidylinositol (GPI)-linked complement regulators, CD55 and CD59, are uniformly deficient on the surface of PNH red cells. To investigate this phenomenon, we have modeled in vitro the C3 binding in the context of C5 blockade by incubating red blood cells from PNH patients with AB0-matched sera from patients on eculizumab. Complement alternative pathway has been activated by mild acidification (in presence of Mg/EGTA to prevent the activation of complement classical pathway) and C3 binding has been assessed by flow cytometry at serial time points. In these experimental conditions a fraction of PNH red blood cells, similar to what happens in vivo, become promptly C3+ and its size increases with the time: from 9.4±2.7% after 5 minutes to 21.2±9.5% after 24 hours. The membrane defects of PNH cells suggested that the deficiency of CD55, which regulates the formation and accelerates the dissociation of C3 convertases, should be responsible for C3 binding to PNH red blood cells in presence of eculizumab (Parker CJ. Hematology Am Soc Hematol Educ Program. 2011;2011:21-29). In order to verify experimentally this hypothesis we have inactivated CD55 or CD59 on normal red blood cells by using blocking monoclonal antibodies (moAb - listed in the figure legend), and we have tested them in vitro upon activation of complement alternative pathway by mild acidification in presence or absence of C5 blockade. We found that CD55 inactivation on normal red blood cells results neither in hemolysis (without C5 blockade) nor in any C3 binding (with C5 blockade). As expected without C5 blockade CD59-inactivated normal red blood cells undergo hemolysis but, surprisingly, we found that in presence of C5 blockade they become bound with C3 fragments (Figure 1), just as it occurs in vivo in PNH patients on eculizumab. The simultaneous inactivation of both CD55 and CD59 further increased the level of C3 binding. Thus, at variance with the starting hypothesis, the deficiency of CD59, not that of CD55, plays the major role in C3 binding to PNH red cells of patients on eculizumab. Therapeutic C5 blockade in PNH patients has unmasked a novel function of CD59: in addition to prevent MAC formation, it plays a central role also in the regulation of C3 activation on cell surface through molecular mechanisms not elucidated yet. It remains to be established the physiological role, if any, of this novel function of CD59 and whether it play a role in determining the pleomorphic clinical features of the congenital CD59 deficiency. Finally, these findings may lead to investigate innovative approaches to reduce C3 binding and extravascular hemolysis in PNH patients on eculizumab and, in a broader context, to modulate complement activity. Figure 1 Figure 1. Disclosures Risitano: Novartis: Research Funding; Alexion Pharmaceuticals: Other: lecture fees, Research Funding; Rapharma: Research Funding; Alnylam: Research Funding.

2021 ◽  
Author(s):  
Choukri Mamoun ◽  
Anasuya C. Pal ◽  
Isaline Renard ◽  
Pallavi Singh ◽  
Pratap Vydyam ◽  
...  

Hematozoa are a subclass of protozoan parasites that invade and develop within vertebrate red blood cells to cause the pathological symptoms associated with diseases of both medical and veterinary importance such as malaria and babesiosis. A major limitation in the study of the most prominent hematozoa, Plasmodium spp, the causative agents of malaria, is the lack of a broadly accessible mouse model to evaluate parasite infection in vivo as is the case for P. falciparum or altogether the lack of an in vitro culture and mouse models as is the case for P. vivax, P. malariae and P. ovale. Similarly, no in vitro culture system exists for Babesia microti, the predominant agent of human babesiosis. In this study, we show that human red blood cells infected with the human pathogen Babesia duncani continuously propagated in culture, as well as merozoites purified from parasite cultures, can cause lethal infection in immunocompetent C3H/HeJ mice. Furthermore, highly reproducible parasitemia and survival outcomes were established using specific parasite loads and different mouse genetic backgrounds. Using the combined in culturein mouse (ICIM) model of B. duncani infection, we demonstrate that current recommended combination therapies for the treatment of human babesiosis, while synergistic in cell culture, have weak potency in vitro and failed to clear infection or prevent death in mice. Interestingly, using the ICIM model, we identified two new endochin-like quinolone prodrugs, ELQ-331 and ELQ468, that alone or in combination with atovaquone are highly efficacious against B. duncani and B. microti. The novelty, ease of use and scalability of the B. duncani ICIM dual model make it an ideal system to study intraerythrocytic parasitism by protozoa, unravel the molecular mechanisms underlying parasite virulence and pathogenesis, and accelerate the development of innovative therapeutic strategies that could be translated to unculturable parasites and important pathogens for which an animal model is lacking.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 896-896 ◽  
Author(s):  
John D Belcher ◽  
Julia Nguyen ◽  
Chunsheng Chen ◽  
Ann Smith ◽  
Abdu I Alayash ◽  
...  

Abstract Abstract 896 Sickle cell disease (SCD) is a devastating hemolytic disease characterized by recurring episodes of painful vaso-occlusive crises and endothelial dysfunction. We hypothesize that hemoglobin (Hb) or hemin (ferri-protoporphyrin IX), released from HbS derived from hemolyzed sickle red blood cells, is fundamental to vaso-occlusion and vasculopathy in SCD. Utilizing intravital microscopy and dorsal skin fold chambers implanted on mice we previously demonstrated transient stasis in subcutaneous venules in response to hypoxia in transgenic sickle, but not normal mice. In the current studies we used NY1DD sickle mice; Townes-AA, -AS, and -SS mice; and C57 normal mice to test whether Hb or heme induce vaso-occlusion in the absence of a hypoxic stimulus. Four groups of 3–6 mice were given a bolus infusion (0.012 ml/g i.v.) of the following: 1) saline; 2) stroma-free HbA (32 umols heme/kg); 3) hemin (32 umols/kg); or 4) water (to induce intravascular hemolysis). In NY1DD mice, Hb, hemin or water induced a range of 36–46% stasis at 1 and 4 hours post-infusion compared to only 4–7% stasis at 1 and 4 hours in saline controls (Fig 1A, p<0.001 for all groups vs saline). In contrast, Hb, hemin or saline induced only 0–6% stasis in C57 mice (Fig 1B, p<0.001 for Hb or hemin in C57 vs NY1DD). Similarly, Townes-AA, -AS and –SS mice had a range of 5–15%, 27–37% and 40–50% stasis, respectively, in response to HbA (p<0.05 for all Townes pairs). The response to Hb or hemin was dose dependent with as little as 0.32 umols heme/kg, equivalent to ∼5 uM heme, a level found in SCD patients. These data support that heme, derived from Hb, promotes vascular stasis in sickle mice. The plasma of SCD patients is deficient in the two primary Hb/heme scavenging proteins haptoglobin (Hp) and hemopexin (Hpx). Therefore we infused equimolar Hp-Hb or Hpx-hemin into NY1DD mice and inhibited Hb- and heme-induced stasis at 1 hour by 79 and 88%, respectively (p<0.001). To examine whether nitrogen derivatives contribute to the mechanism of Hb- or heme-induced stasis, we measured plasma nitrite and nitrate (NOx) in NY1DD sickle mice 4 hours after infusion of Hb or hemin. NOx levels decreased in mice infused with Hb, but not in mice infused with hemin suggesting that NO consumption does not play a role in heme-induced stasis. Previous studies have demonstrated a role for P-selectin in vaso-occlusion in sickle mice. We tested the ability of heme to trigger Weibel Palade body (WPB) exocytosis in cultured primary human umbilical vein endothelial cells (HUVEC). Cells were treated with 10 uM hemin for 2, 5, 10, 15, 30 or 60 minutes and then fixed and stained (without permeabilization) for surface expression of P-selectin and von Willebrand factor (vWF). Cells treated with 100 uM histamine and vehicle served as positive and negative controls, respectively. There was rapid expression of P-selectin as well as vWF strings on the surface of HUVEC within 5 minutes of hemin addition. This is the first report that heme is an agonist for WPB exocytosis. Recently, heme has been shown to be an extracellular inflammatory signaling molecule with strict binding specificity for toll-like receptor-4 (TLR4). A specific small molecule inhibitor of TLR4 (TAK-242) completely prevented heme-induced P-selectin expression in vitro. In vivo the pulmonary veins and arteries of sickle mice injected with hemin expressed surface P-selectin within 15 minutes. Supporting this novel mechanism, blocking antibodies to P-selectin or the drug TAK-242 inhibited heme-induced stasis and thus provide a potential therapy for vaso-occlusion. These data strongly support that heme, released from hemolyzed sickle red blood cells, is fundamental to vaso-occlusion and vasculopathy in SCD. We speculate that removal of Hb and heme with Hp and Hpx, or as we've previously shown, detoxifying heme with heme oxygenase-1, would decrease the oxidative stress, inflammation and vaso-occlusion in SCD that cause endothelial cell dysfunction. Novel therapies focusing on the consequences of endothelial cell/heme interactions such as TLR4 or P-selectin antagonists, in addition to Hp and Hpx modulators should be considered in SCD. Disclosures: Belcher: Sangart, Inc: Research Funding. Nguyen:Sangart Inc: Research Funding. Chen:Sangart, Inc: Research Funding. Vercellotti:Sangart, Inc: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4983-4983
Author(s):  
Maria Tenorio ◽  
Gemma Moreno Jiménez ◽  
Valentín García Gutiérrez ◽  
Ana Jiménez ◽  
Maria Jesús Blanchard ◽  
...  

Daratumumab is a CD38-directed antibody increasingly used for the treatment of adult patients with multiple mieloma. The membrane of red blood cells express CD38 and thus samples from patients treated with daratumumab show agglutination in red blood cell antibody screen tests performed prior to transfusion. This interference hinders the detection of red blood cell alloantibodies. Published literature has described a method to eliminate CD38 in red blood cells with DTT (Chapuy, 2016). This technique is cumbersome, requires positive and negative controls as DTT destroys Kell antigens and can produce in vitro hemolysis. The increasing number of multiple myeloma patients treated with daratumumab poses the need for a simple and straightforward technique with applicability in standard transfusion centers. DaraEx (Inno-Train) is a new anti-CD38 neutralizing agent that overcomes daratumumab-induced interferences detected in pre-transfusion tests without the major drawbacks associated with the DTT technique. Our aim was to validate and implement DaraEx as the method of choice to solve daratumumab interferences detected in pre-transfusion screen tests in a tertiary care center. A two-step approach using in vitro and in vivo samples was designed to validate the new method. First, we compared DaraEx efficacy in vitro to the reference DTT method in two samples spiked with daratumumab to achieve a concentration of 10mg/mL (Sample A: serum from a patient without known red blood cell alloantibodies; Sample B: serum from a patient with alloantibody anti-c). Red blood cells in the screen test (3 red blood cell screen; ID-DiaCell I-II-III) as well as positive (E+ red blood cells) and negative controls (K+ red blood cells) were treated with DTT 0.2M solution for 30 minutes at 37ºC and then washed four times with saline. In parallel, red blood cells in the screen test were incubated during 30 minutes at room temperature in a shaker (600rpm) with DaraEx. Red blood cells treated with each of these methods were used for indirect antiglobulin test with our gel card system (BioRad; IH-1000). Preference of method in terms of time needed and result interpretation was evaluated by three hematologists specialized in blood banking and four different technicians. Secondly, we tested pre-transfusion samples from patients treated with daratumumab with the DaraEx technique to check in vivo efficacy. There was a 100% concordance between both techniques (DDT reference method and DaraEx new method) in both in vitro samples. All hematologists and technicians found the DaraEx technique less cumbersome in terms of processing and time to result (2 hours with DTT versus 1 hour with DaraEx) and the interpretation straightforward. Twelve samples with daratumumab-induced interference in pre-transfusion screen tests belonging to 5 patients were tested between January and July 2019. All the interferences detected resolved with DaraEx regardless of time from last daratumumab administration (range: 7-145 days; mean: 57 days). Figure 1 shows screen test with and without treatment with DaraEx in a patient sample. In our experience, DaraEx technique is a simple, fast and efficacious method, regardless of time from last daratumumab administration, to resolve interferences secondary to daratumumab administration without the major disadvantages associated with DTT. Figure 1 Disclosures García Gutiérrez: Pfizer: Honoraria, Research Funding; Incyte: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


2021 ◽  
Author(s):  
Andrew D. Beale ◽  
Priya Crosby ◽  
Utham K. Valekunja ◽  
Rachel S. Edgar ◽  
Johanna E. Chesham ◽  
...  

AbstractCellular circadian rhythms confer daily temporal organisation upon behaviour and physiology that is fundamental to human health and disease. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body. Being naturally anucleate, RBC circadian rhythms share key elements of post-translational, but not transcriptional, regulation with other cell types. The physiological function and developmental regulation of RBC circadian rhythms is poorly understood, however, partly due to the small number of appropriate techniques available. Here, we extend the RBC circadian toolkit with a novel biochemical assay for haemoglobin oxidation status, termed “Bloody Blotting”. Our approach relies on a redox-sensitive covalent haem-haemoglobin linkage that forms during cell lysis. Formation of this linkage exhibits daily rhythms in vitro, which are unaffected by mutations that affect the timing of circadian rhythms in nucleated cells. In vivo, haemoglobin oxidation rhythms demonstrate daily variation in the oxygen-carrying and nitrite reductase capacity of the blood, and are seen in human subjects under controlled laboratory conditions as well as in freely-behaving humans. These results extend our molecular understanding of RBC circadian rhythms and suggest they serve an important physiological role in gas transport.


2017 ◽  
Vol 117 (07) ◽  
pp. 1402-1411 ◽  
Author(s):  
Laura Beth Mann Dosier ◽  
Vikram J. Premkumar ◽  
Hongmei Zhu ◽  
Izzet Akosman ◽  
Michael F. Wempe ◽  
...  

SummaryThe system L neutral amino acid transporter (LAT; LAT1, LAT2, LAT3, or LAT4) has multiple functions in human biology, including the cellular import of S-nitrosothiols (SNOs), biologically active derivatives of nitric oxide (NO). SNO formation by haemoglobin within red blood cells (RBC) has been studied, but the conduit whereby a SNO leaves the RBC remains unidentified. Here we hypothesised that SNO export by RBCs may also depend on LAT activity, and investigated the role of RBC LAT in modulating SNO-sensitive RBC-endothelial cell (EC) adhesion. We used multiple pharmacologic inhibitors of LAT in vitro and in vivo to test the role of LAT in SNO export from RBCs and in thereby modulating RBC-EC adhesion. Inhibition of human RBC LAT by type-1-specific or nonspecific LAT antagonists increased RBC-endothelial adhesivity in vitro, and LAT inhibitors tended to increase post-transfusion RBC sequestration in the lung and decreased oxygenation in vivo. A LAT1-specific inhibitor attenuated SNO export from RBCs, and we demonstrated LAT1 in RBC membranes and LAT1 mRNA in reticulocytes. The proadhesive effects of inhibiting LAT1 could be overcome by supplemental L-CSNO (S-nitroso-L-cysteine), but not D-CSNO or L-Cys, and suggest a basal anti-adhesive role for stereospecific intercellular SNO transport. This study reveals for the first time a novel role of LAT1 in the export of SNOs from RBCs to prevent their adhesion to ECs. The findings have implications for the mechanisms of intercellular SNO signalling, and for thrombosis, sickle cell disease, and post-storage RBC transfusion, when RBC adhesivity is increased.


2010 ◽  
Vol 53 (3) ◽  
pp. 575-582 ◽  
Author(s):  
Jacques Natan Grinapel Frydman ◽  
Adenilson de Souza da Fonseca ◽  
Vanessa Câmara da Rocha ◽  
Monica Oliveira Benarroz ◽  
Gabrielle de Souza Rocha ◽  
...  

This work evaluated the effect of in vitro and in vivo treatment with ASA on the morphology of the red blood cells. Blood samples or Wistar rats were treated with ASA for one hour. Blood samples or animals treated with saline were used as control group. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of red blood cells were evaluated under optical microscopy. Data showed that the in vitro treatment for one hour with ASA at higher dose used significantly (p<0.05) modified the perimeter/area ratio of the red blood cells. No morphological alterations were obtained with the in vivo treatment. ASA use at highest doses could interfere on shape of red blood cells.


1971 ◽  
Vol 118 (545) ◽  
pp. 465-466 ◽  
Author(s):  
Ngo Tran ◽  
Marcel Laplante ◽  
Etienne Lebel

The decarboxylation of 3, 4-dihydroxyphenyl-alanine (Dopa) to dopamine has been shown previously in animal and human tissues in both in vitro and in vivo studies (Sourkes, 1966; Vogel et al., 1970). However, very little information is available as to whether or not the decarboxylation of Dopa occurs in human red blood cells (RBC). In the present experiment we demonstrated this change in RBC from normals and from schizophrenics. An ionization chamber method was used for an instantaneous and continuous measurement of 14CO2 production from DL-dopa-carboxyl-14C by RBC in vitro.


1926 ◽  
Vol 43 (1) ◽  
pp. 111-106
Author(s):  
Hobart A. Reimann ◽  
Louis A. Julianelle

A study has been made of the variation in number of the blood platelets, and the red and white blood cells of white mice injected with pneumococcus extract. The blood platelets were greatly diminished after the injection, the greatest decrease usually occurring after 24 hours. Purpuric lesions usually developed when the number of blood platelets became less than 500,000 per c.mm. Regeneration of the platelets was accomplished by the 4th to the 9th day but there was an overregeneration and the return to normal did not take place until 2 weeks had elapsed. The red cells were also greatly reduced in number, but the rate of their destruction and regeneration was somewhat slower than that of the platelets. The leucocytes were slightly if at all influenced by the pneumococcus extract. Pneumococcus extracts were shown to be thrombolytic and hemolytic. Heat destroyed the activity of both the lysins in vitro. Heated extract produced purpura in mice but did not cause a severe anemia. Extracts adsorbed with either blood platelets or red blood cells showed a marked diminution in their thrombolytic and hemolytic activity in vitro. Such extracts, however, produced purpura as well as severe anemia and thrombopenia in mice.


Sign in / Sign up

Export Citation Format

Share Document