scholarly journals A novel mechanism of thrombocytopenia by PS exposure through TMEM16F in sphingomyelin synthase 1 deficiency

2021 ◽  
Vol 5 (20) ◽  
pp. 4265-4277
Author(s):  
Yoritaka Fujii ◽  
Makoto Taniguchi ◽  
Shingo Nagaya ◽  
Yoshibumi Ueda ◽  
Chieko Hashizume ◽  
...  

Abstract Sphingomyelin synthase 1 (SMS1) contributes to the generation of membrane sphingomyelin (SM) and affects SM-mediated physiological functions. Here, we describe the hematologic phenotypes, such as reduced circulating platelets and dysfunctional hemostasis, in SMS1-deficient (SMS1-KO) mice. SMS1-KO mice display pathologic manifestations related to idiopathic thrombocytopenia (ITP), including relatively high amounts of peripheral blood reticulated platelets, enhanced megakaryopoiesis in the bone marrow and spleen, and splenomegaly. Deficiency of SMS1, but not SMS2, prevented SM production and enhanced phosphatidylserine (PS) externalization on the plasma membranes of platelets and megakaryocytes. Consequently, SMS1-KO platelets were excessively cleared by macrophages in the spleen. Multimer formation in the plasma membrane of TMEM16F, a known calcium (Ca2+)-activated nonselective ion channel and Ca2+-dependent PS scramblase, was enhanced; the result was PS externalization to outer leaflets through increased Ca2+ influx in immortalized mouse embryonic fibroblasts established from SMS1-KO mice (SMS1-KO tMEFs), as seen with SMS1-KO platelets. Thus, SMS1 deficiency changed the TMEM16F distribution on the membrane microdomain, regulating Ca2+ influx-dependent PS exposure. SMS1-KO tMEFs in which TMEM16F was knocked out by using the CRISPR/Cas9 system lacked both the Ca2+ influx and excess PS exposure seen in SMS1-KO tMEFs. Therefore, SM depletion on platelet membrane microdomains due to SMS1 deficiency enhanced PS externalization via a Ca2+ influx through TMEM16F activation, leading to elevated platelet clearance and causing hemostasis dysfunction through thrombocytopenia. Our current findings show that the SM-rich microdomain generated by SMS1 is a potent regulator of thrombocytopenia through TMEM16F, suggesting that its dysfunction may be a novel additional mechanism of ITP.

Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


2005 ◽  
Vol 79 (11) ◽  
pp. 7077-7086 ◽  
Author(s):  
Erica L. Brown ◽  
Douglas S. Lyles

ABSTRACT Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.


2011 ◽  
Vol 8 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Hamid Saeed ◽  
Hanna Taipaleenmäki ◽  
Abdullah M. Aldahmash ◽  
Basem M. Abdallah ◽  
Moustapha Kassem

2014 ◽  
Vol 289 (44) ◽  
pp. 30842-30856 ◽  
Author(s):  
Yasuhiro Hayashi ◽  
Yoko Nemoto-Sasaki ◽  
Takashi Tanikawa ◽  
Saori Oka ◽  
Kiyoto Tsuchiya ◽  
...  

Membrane fusion between the viral envelope and plasma membranes of target cells has previously been correlated with HIV-1 infection. Lipids in the plasma membrane, including sphingomyelin, may be crucially involved in HIV-1 infection; however, the role of lipid-metabolic enzymes in membrane fusion remains unclear. In this study, we examined the roles of sphingomyelin synthase (SMS) in HIV-1 Env-mediated membrane fusion using a cell-cell fusion assay with HIV-1 mimetics and their target cells. We employed reconstituted cells as target cells that stably express Sms1 or Sms2 in Sms-deficient cells. Fusion susceptibility was ∼5-fold higher in Sms2-expressing cells (not in Sms1-expressing cells) than in Sms-deficient cells. The enhancement of fusion susceptibility observed in Sms2-expressing cells was reversed and reduced by Sms2 knockdown. We also found that catalytically nonactive Sms2 promoted membrane fusion susceptibility. Moreover, SMS2 co-localized and was constitutively associated with the HIV receptor·co-receptor complex in the plasma membrane. In addition, HIV-1 Env treatment resulted in a transient increase in nonreceptor tyrosine kinase (Pyk2) phosphorylation in Sms2-expressing and catalytically nonactive Sms2-expressing cells. We observed that F-actin polymerization in the region of membrane fusion was more prominent in Sms2-expressing cells than Sms-deficient cells. Taken together, our research provides insight into a novel function of SMS2 which is the regulation of HIV-1 Env-mediated membrane fusion via actin rearrangement.


Open Biology ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 170069 ◽  
Author(s):  
Anne S. B. Olsen ◽  
Nils J. Færgeman

Sphingolipids are highly enriched in the nervous system where they are pivotal constituents of the plasma membranes and are important for proper brain development and functions. Sphingolipids are not merely structural elements, but are also recognized as regulators of cellular events by their ability to form microdomains in the plasma membrane. The significance of such compartmentalization spans broadly from being involved in differentiation of neurons and synaptic transmission to neuronal–glial interactions and myelin stability. Thus, perturbations of the sphingolipid metabolism can lead to rearrangements in the plasma membrane, which has been linked to the development of various neurological diseases. Studying microdomains and their functions has for a long time been synonymous with studying the role of cholesterol. However, it is becoming increasingly clear that microdomains are very heterogeneous, which among others can be ascribed to the vast number of sphingolipids. In this review, we discuss the importance of microdomains with emphasis on sphingolipids in brain development and function as well as how disruption of the sphingolipid metabolism (and hence microdomains) contributes to the pathogenesis of several neurological diseases.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Frauke Mücksch ◽  
Mevlut Citir ◽  
Christian Lüchtenborg ◽  
Bärbel Glass ◽  
Alexis Traynor-Kaplan ◽  
...  

AbstractHuman immunodeficiency virus type 1 (HIV-1) acquires its lipid envelope during budding from the plasma membrane of the host cell. Various studies indicated that HIV-1 membranes differ from producer cell plasma membranes, suggesting budding from specialized membrane microdomains. The phosphoinositide PI(4,5)P2 has been of particular interest since PI(4,5)P2 is needed to recruit the viral structural polyprotein Gag to the plasma membrane and thus facilitates viral morphogenesis. While there is evidence for an enrichment of PIP2 in HIV-1, fully quantitative analysis of all phosphoinositides remains technically challenging and therefore has not been reported, yet. Here, we present a comprehensive analysis of the lipid content of HIV-1 and of plasma membranes from infected and non-infected producer cells, resulting in a total of 478 quantified lipid compounds, including molecular species distribution of 25 different lipid classes. Quantitative analyses of phosphoinositides revealed strong enrichment of PIP2, but also of PIP3, in the viral compared to the producer cell plasma membrane. We calculated an average of ca. 8,000 PIP2 molecules per HIV-1 particle, three times more than Gag. We speculate that the high density of PIP2 at the HIV-1 assembly site is mediated by transient interactions with viral Gag polyproteins, facilitating PIP2 concentration in this microdomain. These results are consistent with our previous observation that PIP2 is not only required for recruiting, but also for stably maintaining Gag at the plasma membrane. We believe that this quantitative analysis of the molecular anatomy of the HIV-1 lipid envelope may serve as standard reference for future investigations.


Sign in / Sign up

Export Citation Format

Share Document