Distinct gene expression profiles of cultured stromal cells from the patients with idiopathic pulmonary fibrosis and lung adenocarcinoma

Author(s):  
Siri Lehtonen ◽  
Henna Karvonen ◽  
Elisa Lappi-Blanco ◽  
Raija Sormunen ◽  
Riitta Kaarteenaho
2020 ◽  
Vol 318 (4) ◽  
pp. L684-L697 ◽  
Author(s):  
Valentina Biasin ◽  
Slaven Crnkovic ◽  
Anita Sahu-Osen ◽  
Anna Birnhuber ◽  
Elie El Agha ◽  
...  

Pulmonary fibrosis is characterized by pronounced collagen deposition and myofibroblast expansion, whose origin and plasticity remain elusive. We utilized a fate-mapping approach to investigate α-smooth muscle actin (αSMA)+ and platelet-derived growth factor receptor α (PDGFRα)+ cells in two lung fibrosis models, complemented by cell type-specific next-generation sequencing and investigations on human lungs. Our data revealed that αSMA+ and PDGFRα+ cells mark two distinct mesenchymal lineages with minimal transdifferentiation potential during lung fibrotic remodeling. Parenchymal and perivascular fibrotic regions were populated predominantly with PDGFRα+ cells expressing collagen, while αSMA+ cells in the parenchyma and vessel wall showed variable expression of collagen and the contractile protein desmin. The distinct gene expression profile found in normal conditions was retained during pathologic remodeling. Cumulatively, our findings identify αSMA+ and PDGFRα+ cells as two separate lineages with distinct gene expression profiles in adult lungs. This cellular heterogeneity suggests that anti-fibrotic therapy should target diverse cell populations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250109
Author(s):  
Mervi Kreus ◽  
Siri Lehtonen ◽  
Sini Skarp ◽  
Riitta Kaarteenaho

Idiopathic pulmonary fibrosis (IPF) and lung cancer share common risk factors, epigenetic and genetic alterations, the activation of similar signaling pathways and poor survival. The aim of this study was to examine the gene expression profiles of stromal cells from patients with IPF and lung adenocarcinoma (ADC) as well as from normal lung. The gene expression levels of cultured stromal cells derived from non-smoking patients with ADC from the tumor (n = 4) and the corresponding normal lung (n = 4) as well as from patients with IPF (n = 4) were investigated with Affymetrix microarrays. The expression of collagen type IV alpha 1 chain, periostin as well as matrix metalloproteinase-1 and -3 in stromal cells and lung tissues were examined with quantitative real-time reverse transcriptase polymerase chain reaction and immunohistochemistry, respectively. Twenty genes were similarly up- or down-regulated in IPF and ADC compared to control, while most of the altered genes in IPF and ADC were differently expressed, including several extracellular matrix genes. Collagen type IV alpha 1 chain as well as matrix metalloproteinases-1 and -3 were differentially expressed in IPF compared to ADC. Periostin was up-regulated in both IPF and ADC in comparison to control. All studied factors were localized by immunohistochemistry in stromal cells within fibroblast foci in IPF and stroma of ADC. Despite the similarities found in gene expressions of IPF and ADC, several differences were also detected, suggesting that the molecular changes occurring in these two lung illnesses are somewhat different.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ning Zhang ◽  
Yali Guo ◽  
Cong Wu ◽  
Bohan Jiang ◽  
Yuguang Wang

Background. Idiopathic Pulmonary Fibrosis (IPF) is one of the most common idiopathic interstitial pneumonia, which can occur all over the world. The median survival time of patients is about 3-5 years, and the mortality is relatively high. Objective. To reveal the potential molecular characteristics of IPF and deepen the understanding of the molecular mechanism of IPF. In order to provide some guidance for the clinical treatment, new drug development, and prognosis judgment of IPF. Although the preliminary conclusion of this study has certain guiding significance for the treatment of IPF and so on, it needs more accurate analytical approaches and large sample clinical trials to verify. Methods. 220 patients with IPF were divided into different subgroups according to the gene expression profiles, which were obtained from the Gene Expression Omnibus (GEO) database. In addition, these subgroups present different expression forms and clinical features. Therefore, weighted gene coexpression analysis (WGCNA) was used to seek the differences between subtypes. And six subgroup-specific WGCNA modules were identified. Results. Combined with the characteristics of WGCNA and KEGG enrichment modules, the autophagic pathway was only upregulated in subgroup I and enriched significantly. The differentiation pathways of Th1 and Th2 cells were only upregulated and enriched in subgroup II. At the same time, combined with clinical information, IPF patients in subgroup II were older and more serious, which may be closely related to the differentiation of Th1 and Th2 cells. In contrast, the neuroactive ligand-receptor interaction pathway and Ca+ signaling pathway were significantly upregulated and enriched in subgroup III. Although there was no significant difference in prognosis between subgroup I and subgroup III, their intrinsic biological characteristics were very different. These results suggest that the subtypes may represent risk factors of age and intrinsic biological characteristics and may also partly reflect the severity of the disease. Conclusion. In conclusion, current studies have improved our understanding of IPF-related molecular mechanisms. At the same time, because the results show that patients from different subgroups may have their own unique gene expression patterns, it reminds us that patients in each subgroup should receive more personalized treatment.


2009 ◽  
Vol 180 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Kazuhisa Konishi ◽  
Kevin F. Gibson ◽  
Kathleen O. Lindell ◽  
Thomas J. Richards ◽  
Yingze Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document