Influence of bacteria from the COPD lung microbiome on cigarette smoke-induced pro-inflammatory responses of three-dimensional lung epithelial cell cultures

Author(s):  
Qi Ni ◽  
Charlotte Rigauts ◽  
Lisa Ostyn ◽  
Eva Vandeplassche ◽  
Guy Brusselle ◽  
...  
2018 ◽  
Vol 47 ◽  
pp. 137-146 ◽  
Author(s):  
Pieter S. Hiemstra ◽  
Gwendolynn Grootaers ◽  
Anne M. van der Does ◽  
Cyrille A.M. Krul ◽  
Ingeborg M. Kooter

2018 ◽  
Vol 32 (4) ◽  
pp. 1880-1890 ◽  
Author(s):  
Kenji Mizumura ◽  
Matthew J. Justice ◽  
Kelly S. Schweitzer ◽  
Sheila Krishnan ◽  
Irina Bronova ◽  
...  

2011 ◽  
Vol 26 (4) ◽  
pp. 473-483 ◽  
Author(s):  
Yan Guan ◽  
Fen-Fen Li ◽  
Ling Hong ◽  
Xiao-Feng Yan ◽  
Gong-Li Tan ◽  
...  

2015 ◽  
Vol 6 (12) ◽  
pp. e2016-e2016 ◽  
Author(s):  
H-G Moon ◽  
Y Cao ◽  
J Yang ◽  
J H Lee ◽  
H S Choi ◽  
...  

Abstract Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release ‘messenger’ or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial ‘apoptotic bodies’, as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50–120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after hyperoxia exposure. These circulating EVs also activated systemic macrophages other than the alveolar ones. Collectively, the results show that hyperoxia-induced, lung epithelial cell-derived and caspase-3 enriched EVs activate macrophages and mediate the inflammatory lung responses involved in lung injury.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ximena M. Muresan ◽  
Franco Cervellati ◽  
Claudia Sticozzi ◽  
Giuseppe Belmonte ◽  
Chung Hin Chui ◽  
...  

Cigarette smoke (CS) contains over 4700 compounds, many of which can affect cellular redox balance through free radicals production or through the modulation of antioxidant enzymes. The respiratory tract is one of the organs directly exposed to CS and it is known that CS can damage the integrity of lung epithelium by affecting cell junctions and increasing epithelium permeability. In this study, we have used a human lung epithelial cell line, Calu-3, to evaluate the effect of CS on lung epithelial cell junctions levels, with special focus on the expression of two proteins involved in intercellular communication: connexins (Cx) 40 and 43. CS exposure increased Cx40 gene expression but not of Cx43. CS also induced NFκB activation and the formation of 4HNE-Cxs adducts. Since corilagin, a natural polyphenol, is able to inhibit NFκB activation, we have determined whether corilagin could counteract the effect of CS on Cxs expression. Corilagin was able to diminish CS induced Cx40 gene expression, 4HNE-Cx40 adducts formation, and NFκB activation. The results of this study demonstrated that CS induced the loss of cellular junctions in lung epithelium, possibly as a consequence of Cx-4HNE adducts formation, and corilagin seems to be able to abolish these CS induced alterations.


2021 ◽  
pp. 096032712110594
Author(s):  
Xin Tang ◽  
Zhenyu Li ◽  
Zhi Yu ◽  
Jinna Li ◽  
Jinbang Zhang ◽  
...  

Cigarette smoke (CS)-caused ferroptosis was involved in the pathogenesis of COPD, but the role of ferroptosis in lung epithelial injury and inflammation is not clear. Rats were treated with CS or CUR and BEAS-2B cells were exposed to CS extract (CSE), ferrostatin-1 (Fer-1), deferoxamine (DFO), or CUR to detect reactive oxygen species (ROS) accumulation, lipid peroxidation, iron overload, and ferroptosis-related protein, which were the characteristic changes of ferroptosis. Compared with the control group, CSE-treated BEAS-2B cells had more cell death, higher cytotoxicity, and lower cell viability. The infiltration of inflammatory cell around the bronchi in the CS group of rats was more than that in the normal group. Meanwhile, CSE/CS elevated the levels of interleukin-6 and tumor necrosis factor-α in BEAS-2B cells and bronchoalveolar lavage fluid of rats. Besides, accumulative ROS and depleted glutathione was observed in vitro. In BEAS-2B cells and lung tissues of rats, CSE/CS increased malondialdehyde and iron; down-regulated solute carrier family 7, glutathione peroxidase 4, and ferritin heavy chain levels; and up-regulated transferrin receptor level. These changes were rescued by pretreatment of Fer-1 or DFO in vitro, and mitigated by CUR in vitro and in vivo. Collectively, this study reveals that ferroptosis was involved in lung epithelial cell injury and inflammation induced by CS, and CUR may alleviate CS-induced injury, inflammation, and ferroptosis of lung epithelial cell.


Sign in / Sign up

Export Citation Format

Share Document