Incremental experience in optimizing in vitro primary culture of human pulmonary arterial endothelial cells harvested from Swan-Ganz catheters

Author(s):  
Birger Tielemans ◽  
Leanda Stoian ◽  
Allard Wagenaar ◽  
Mathias Leys ◽  
Catharina Belge ◽  
...  
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hiroaki Ichimori ◽  
Shigetoyo Kogaki ◽  
Hidekazu Ishida ◽  
Jun Narita ◽  
Toshiki Uchikawa ◽  
...  

Gender differences in the development of Pulmonary Artery Hypertension (PAH) have been documented in both human and animal studies. In human, idiopathic PAH is predominantly a disease of young women in their child-bearing years, which suggests a role of female sex hormones in the pathogenesis of PAH. However, the effect of sex hormones on pulmonary vasculatures and the development of PAH has not been fully understood. Recent researches have revealed genetic predisposition such as BMPR (Bone Morphogenetic Protein Receptor). The aim of the present study is to investigate the effect of β-estradiol (E2) and oxygen concentration upon BMPR signal pathway in pulmonary arterial endothelial cells (PAEC) in vitro. Human and rat PAEC were cultured and we examined the expression of BMPR2, BMP-regulated Smads, and Id1 under 21% or 1% O 2 with BMP2 stimulation. Then, we investigate changes in the expression of these molecules in the presence of E2 with or without estrogen receptor antagonist (ICI 182.780.). First, we confirmed that estrogen receptor α and β were expressed in both PAECs. Second, we demonstrated that the expression of mRNA transcripts for BMPR2 and Id1 in PAEC was reduced after exposure to 24 hours’ hypoxia. In addition, E2 decreased the expression of phosphorylated Smad (p-Smad)1/5/8 in a dose-dependent manner (10 −10 M-10 −7 M) and p-Smad1/5/8 expression were decreased about 80% by 10 −7 M of E2. These attenuation of p-Smad1/5/8 expression were rescued by ICI182.780. Third, under normoxic condition with cobalt chloride or deferoxamine to prevent the degradation of HIF (hypoxia-inducible factor)-1α, the presence of E2 decreased the expression of p-Smad1/5/8 like under hypoxia. Conversely, administration of HIF-1α inhibitor (YC-1) canceled the reduced expression of p-Smad1/5/8 like under normoxia. Under hypoxia, the presence of E2 attenuates the BMPR signal pathway in PAEC in vitro. Our data indicated that the advance effect of E2 on BMPR signal pathway was associated with HIF-1α and estrogen receptor. Our observations provide the first evidence that female sex hormone affects on BMPR signal pathway, which can offer new strategies for the treatment of PAH.


1987 ◽  
Vol 253 (4) ◽  
pp. H878-H883 ◽  
Author(s):  
H. W. Farber ◽  
D. M. Center ◽  
S. Rounds

By the use of production of neutrophil chemoattractant activity as a marker, we investigated the responsiveness of endothelial cells of four different anatomic origins to altered ambient oxygen tension to determine whether genetic or conditioned variation existed. The ability of bovine aortic, bovine pulmonary arterial, bovine coronary arterial, and human umbilical vein endothelial cells incubated in decreased oxygen concentrations to release neutrophil chemoattractant activity was assessed. Bovine aortic, human umbilical vein, and bovine coronary arterial endothelial cells produce neutrophil chemoattractant activity in response to 10 or 3% ambient oxygen in vitro. In contrast, 0% ambient oxygen is required for appearance of neutrophil chemoattractant activity from pulmonary artery endothelial cells. These studies suggest that there may be genetic or conditioned variations in the response of endothelium from different vascular beds to decreased oxygen tensions. Furthermore, endothelial cells may play a role in neutrophil-mediated tissue injury during ischemia.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3229
Author(s):  
Birger Tielemans ◽  
Leanda Stoian ◽  
Allard Wagenaar ◽  
Mathias Leys ◽  
Catharina Belge ◽  
...  

Pulmonary arterial hypertension (PAH) is a devastating condition affecting the pulmonary microvascular wall and endothelium, resulting in their partial or total obstruction. Despite a combination of expensive vasodilatory therapies, mortality remains high. Personalized therapeutic approaches, based on access to patient material to unravel patient specificities, could move the field forward. An innovative technique involving harvesting pulmonary arterial endothelial cells (PAECs) at the time of diagnosis was recently described. The aim of the present study was to fine-tune the initial technique and to phenotype the evolution of PAECs in vitro subcultures. PAECs were harvested from Swan-Ganz pulmonary arterial catheters during routine diagnostic or follow up right heart catheterization. Collected PAECs were phenotyped by flow cytometry and immunofluorescence focusing on endothelial-specific markers. We highlight the ability to harvest patients’ PAECs and to maintain them for up to 7–12 subcultures. By tracking the endothelial phenotype, we observed that PAECs could maintain an endothelial phenotype for several weeks in culture. The present study highlights the unique opportunity to obtain homogeneous subcultures of primary PAECs from patients at diagnosis and follow-up. In addition, it opens promising perspectives regarding tailored precision medicine for patients suffering from rare pulmonary vascular diseases.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Oliver ◽  
S.F Rocha ◽  
M Spaczynska ◽  
D.V Lalama ◽  
M Gomez ◽  
...  

Abstract Background Endothelial dysfunction is one of the most important hallmarks of pulmonary arterial hypertension (PAH). This leads to anomalous production of vasoactive mediators that are responsible for a higher vascular tone and a subsequent increase in pulmonary artery pressure (PAP), and to an increased vascular permeability that favors perivascular inflammation and remodeling, thus worsening the disease. Therefore, preservation of the endothelial barrier could become a relevant therapeutic strategy. Purpose In previous studies, others and we have suggested the pharmacological activation of the β3-adrenergic receptor (AR) as a potential therapeutic strategy for pulmonary hypertension (PH) due to left heart disease. However, its potential use in other forms of PH remain unclear. The aim of the present study was to elucidate whether the β3-AR agonist mirabegron could preserve pulmonary endothelium function and be a potential new therapy in PAH. Methods For this purpose, we have evaluated the effect of mirabegron (2 and 10 mg/kg·day) in different animal models, including the monocrotaline and the hypoxia-induced PAH models in rats and mice, respectively. Additionally, we have used a transgenic mouse model with endothelial overexpression of human β3-AR in a knockout background, and performed in vitro experiments with human pulmonary artery endothelial cells (HPAECs) for mechanistic experiments. Results Our results show a dose dependent effect of mirabegron in reducing mean PAP and Right Ventricular Systolic Pressure in both mice and rats. In addition, the use of transgenic mice has allowed us to determine that pulmonary endothelial cells are key mediators of the beneficial role of β3-AR pathway in ameliorating PAH. Mechanistically, we have shown in vitro that activation of β3-AR with mirabegron protects HPAECs from hypoxia-induced ROS production and mitochondrial fragmentation by restoring mitochondrial fission/fusion dynamics. Conclusions This protective effect of mirabegron would lead to endothelium integrity and preserved pulmonary endothelial function, which are necessary for a correct vasodilation, avoiding increased permeability and remodeling. Altogether, the current study demonstrates a beneficial effect of the β3-AR agonist mirabegron that could open new therapeutic avenues in PAH. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Programa de Atracciόn de Talento, Comunidad de Madrid


2021 ◽  
Vol 22 (2) ◽  
pp. 978
Author(s):  
Skadi Lau ◽  
Manfred Gossen ◽  
Andreas Lendlein ◽  
Friedrich Jung

Although cardiovascular devices are mostly implanted in arteries or to replace arteries, in vitro studies on implant endothelialization are commonly performed with human umbilical cord-derived venous endothelial cells (HUVEC). In light of considerable differences, both morphologically and functionally, between arterial and venous endothelial cells, we here compare HUVEC and human umbilical cord-derived arterial endothelial cells (HUAEC) regarding their equivalence as an endothelial cell in vitro model for cardiovascular research. No differences were found in either for the tested parameters. The metabolic activity and lactate dehydrogenase, an indicator for the membrane integrity, slightly decreased over seven days of cultivation upon normalization to the cell number. The amount of secreted nitrite and nitrate, as well as prostacyclin per cell, also decreased slightly over time. Thromboxane B2 was secreted in constant amounts per cell at all time points. The Von Willebrand factor remained mainly intracellularly up to seven days of cultivation. In contrast, collagen and laminin were secreted into the extracellular space with increasing cell density. Based on these results one might argue that both cell types are equally suited for cardiovascular research. However, future studies should investigate further cell functionalities, and whether arterial endothelial cells from implantation-relevant areas, such as coronary arteries in the heart, are superior to umbilical cord-derived endothelial cells.


1996 ◽  
Vol 36 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Nobuhiro Ichikawa ◽  
Kohji Naora ◽  
Hidenari Hirano ◽  
Michio Hashimoto ◽  
Sumio Masumura ◽  
...  

2004 ◽  
Vol 287 (1) ◽  
pp. L60-L68 ◽  
Author(s):  
Louis G. Chicoine ◽  
Michael L. Paffett ◽  
Tamara L. Young ◽  
Leif D. Nelin

Nitric oxide (NO) is produced by NO synthase (NOS) from l-arginine (l-Arg). Alternatively, l-Arg can be metabolized by arginase to produce l-ornithine and urea. Arginase (AR) exists in two isoforms, ARI and ARII. We hypothesized that inhibiting AR with l-valine (l-Val) would increase NO production in bovine pulmonary arterial endothelial cells (bPAEC). bPAEC were grown to confluence in either regular medium (EGM; control) or EGM with lipopolysaccharide and tumor necrosis factor-α (L/T) added. Treatment of bPAEC with L/T resulted in greater ARI protein expression and ARII mRNA expression than in control bPAEC. Addition of l-Val to the medium led to a concentration-dependent decrease in urea production and a concentration-dependent increase in NO production in both control and L/T-treated bPAEC. In a second set of experiments, control and L/T bPAEC were grown in EGM, EGM with 30 mM l-Val, EGM with 10 mM l-Arg, or EGM with both 10 mM l-Arg and 30 mM l-Val. In both control and L/T bPAEC, treatment with l-Val decreased urea production and increased NO production. Treatment with l-Arg increased both urea and NO production. The addition of the combination l-Arg and l-Val decreased urea production compared with the addition of l-Arg alone and increased NO production compared with l-Val alone. These data suggest that competition for intracellular l-Arg by AR may be involved in the regulation of NOS activity in control bPAEC and in response to L/T treatment.


2002 ◽  
Vol 282 (1) ◽  
pp. L36-L43 ◽  
Author(s):  
Marilyn P. Merker ◽  
Robert D. Bongard ◽  
Nicholas J. Kettenhofen ◽  
Yoshiyuki Okamoto ◽  
Christopher A. Dawson

Pulmonary arterial endothelial cells possess transplasma membrane electron transport (TPMET) systems that transfer intracellular reducing equivalents to extracellular electron acceptors. As one aspect of determining cellular mechanisms involved in one such TPMET system in pulmonary arterial endothelial cells in culture, glycolysis was inhibited by treatment with iodoacetate (IOA) or by replacing the glucose in the cell medium with 2-deoxy-d-glucose (2-DG). TPMET activity was measured as the rate of reduction of the extracellular electron acceptor polymer toluidine blue O polyacrylamide. Intracellular concentrations of NADH, NAD+, NADPH, and NADP+ were determined by high-performance liquid chromatography of KOH cell extracts. IOA decreased TPMET activity to 47% of control activity concomitant with a decrease in the NADH/NAD+ ratio to 34% of the control level, without a significant change in the NADPH/NADP+ ratio. 2-DG decreased TPMET activity to 53% of control and decreased both NADH/NAD+ and NADPH/NADP+ ratios to 51% and 55%, respectively, of control levels. When lactate was included in the medium along with the inhibitors, the effects of IOA and 2-DG on both TPMET activity and the NADPH/NADP+ ratios were prevented. The results suggest that cellular redox status is a determinant of pulmonary arterial endothelial cell TPMET activity, with TPMET activity more highly correlated with the poise of the NADH/NAD+redox pair.


Sign in / Sign up

Export Citation Format

Share Document