scholarly journals Overdiagnosis of lung cancer with low-dose computed tomography screening: meta-analysis of the randomised clinical trials

Breathe ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 200013 ◽  
Author(s):  
John Brodersen ◽  
Theis Voss ◽  
Frederik Martiny ◽  
Volkert Siersma ◽  
Alexandra Barratt ◽  
...  

In low-dose computed tomography (LDCT) screening for lung cancer, all three main conditions for overdiagnosis in cancer screening are present: 1) a reservoir of slowly or nongrowing lung cancer exists; 2) LDCT is a high-resolution imaging technology with the potential to identify this reservoir; and 3) eligible screening participants have a high risk of dying from causes other than lung cancer. The degree of overdiagnosis in cancer screening is most validly estimated in high-quality randomised controlled trials (RCTs), with enough follow-up time after the end of screening to avoid lead-time bias and without contamination of the control group.Nine RCTs investigating LDCT screening were identified. Two RCTs were excluded because lung cancer incidence after the end of screening was not published. Two other RCTs using active comparators were also excluded. Therefore, five RCTs were included: two trials were at low risk of bias, two of some concern and one at high risk of bias. In a meta-analysis of the two low risk of bias RCTs including 8156 healthy current or former smokers, 49% of the screen-detected cancers were overdiagnosed. There is uncertainty about this substantial degree of overdiagnosis due to unexplained heterogeneity and low precision of the summed estimate across the two trials.Key pointsNine randomised controlled trials (RCTs) on low-dose computed tomography screening were identified; five were included for meta-analysis but only two of those were at low risk of bias.In a meta-analysis of recent low risk of bias RCTs including 8156 healthy current or former smokers from developed countries, we found that 49% of the screen-detected cancers may be overdiagnosed.There is uncertainty about the degree of overdiagnosis in lung cancer screening due to unexplained heterogeneity and low precision of the point estimate.If only high-quality RCTs are included in the meta-analysis, the degree of overdiagnosis is substantial.Educational aimsTo appreciate that low-dose computed tomography screening for lung cancer meets all three main conditions for overdiagnosis in cancer screening: a reservoir of indolent cancers exists in the population; the screening test is able to “tap” this reservoir by detecting biologically indolent cancers as well as biologically important cancers; and the population being screened is characterised by a relatively high competing risk of death from other causesTo learn about biases that might affect the estimates of overdiagnosis in randomised controlled trials in cancer screening

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1553
Author(s):  
Sébastien Gendarme ◽  
Helene Goussault ◽  
Jean-Baptiste Assié ◽  
Cherifa Taleb ◽  
Christos Chouaïd ◽  
...  

Although organized, low-dose, computed-tomography (CT) scan lung-cancer screening has been shown to lower all-cause and lung-cancer-specific mortality, the primary cause of death for subjects eligible for such screening remains cardiovascular (CV) mortality. This meta-analysis study was undertaken to evaluate the impact of screening-scan-detected coronary artery calcifications (CACs) on CV and all-cause mortality. We conducted a systematic review and meta-analysis of studies reporting CV mortality according to the Agatson CAC score for participants in a lung-cancer screening program of randomized clinical or cohort studies. PubMed, Embase, and Cochrane databases were screened in June 2020. Two authors independently selected articles and extracted data. Six studies, including 20,175 subjects, were retained. CV and all-cause mortality rates were higher for subjects with CAC scores >0, with respective relative risks of 2.02 [95% CI 1.23–3.32] and 2.29 [95% CI 1.00–5.21]. Both mortality rates were even higher for those with high CAC scores (>400 or >1000). CACs are more common in men than in women, with an odds ratio of 1.49 [95% CI 1.40–1.59]. The presence of CAC is associated with CV mortality with an RR of 2.05 [95% CI 1.20–3.57] in men and 2.37 [CI 95% 1.29–5.09] in women, respectively. Analysis of lung-cancer-screening scans for CACs is a tool able to predict CV mortality. Prospective studies within those programs are needed to assess the benefit of primary CV prevention based on CAC detection.


2020 ◽  
Vol 134 ◽  
pp. 107-114 ◽  
Author(s):  
Alexandre Sadate ◽  
Bob V. Occean ◽  
Jean-Paul Beregi ◽  
Aymeric Hamard ◽  
Takieddine Addala ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Huiqin Yang ◽  
Jo Varley-Campbell ◽  
Helen Coelho ◽  
Linda Long ◽  
Sophie Robinson ◽  
...  

Abstract Background Diagnosis of lung cancer frequently occurs in its later stages. Low-dose computed tomography (LDCT) could detect lung cancer early. Methods Our objective was to estimate the effect of LDCT lung cancer screening on mortality in high-risk populations. A systematic review of randomised controlled trials (RCTs) comparing LDCT screening programmes with usual care (no screening) or other imaging screening programme (such as chest X-ray (CXR)) was conducted. RCTs of CXR screening were additionally included in the network meta-analysis. Bibliographic sources including MEDLINE, Embase, Web of Science and the Cochrane Library were searched to January 2017. All key review steps were done by two persons. Quality assessment used the Cochrane Risk of Bias tool. Meta-analyses were performed. Results Four RCTs were included. More will provide data in the future. Meta-analysis demonstrated that LDCT screening with up to 9.80 years of follow-up was associated with a statistically non-significant decrease in lung cancer mortality (pooled relative risk (RR) 0.94, 95% confidence interval (CI) 0.74 to 1.19; p = 0.62). There was a statistically non-significant increase in all-cause mortality. Given the considerable heterogeneity for both outcomes, the results should be treated with caution. Network meta-analysis including the four original RCTs plus two further RCTs assessed the relative effectiveness of LDCT, CXR and usual care. The results showed that in terms of lung cancer mortality reduction LDCT was ranked as the best screening strategy, CXR screening as the worst strategy and usual care intermediate. Conclusions LDCT screening may be effective in reducing lung cancer mortality but there is considerable uncertainty: the largest of the RCTs compared LDCT with CXR screening rather than no screening; there is imprecision of the estimates; and there is important heterogeneity between the included study results. The uncertainty about the effect on all-cause mortality is even greater. Maturing trials may resolve the uncertainty.


2019 ◽  
Vol 65 (2) ◽  
pp. 224-233
Author(s):  
Sergey Morozov ◽  
Viktor Gombolevskiy ◽  
Anton Vladzimirskiy ◽  
Albina Laypan ◽  
Pavel Kononets ◽  
...  

Study aim. To justify selective lung cancer screening via low-dose computed tomography and evaluate its effectiveness. Materials and methods. In 2017 we have concluded the baseline stage of “Lowdose computed tomography in Moscow for lung cancer screening (LDCT-MLCS)” trial. The trial included 10 outpatient clinics with 64-detector CT units (Toshiba Aquilion 64 and Toshiba CLX). Special low-dose protocols have been developed for each unit with maximum effective dose of 1 mSv (in accordance with the requirements of paragraph 2.2.1, Sanitary Regulations 2.6.1.1192-03). The study involved 5,310 patients (53% men, 47% women) aged 18-92 years (mean age 62 years). Diagnosis verification was carried out in the specialized medical organizations via consultations, additional instrumental, laboratory as well as pathohistological studies. The results were then entered into the “National Cancer Registry”. Results. 5310 patients (53% men, 47% women) aged 18 to 92 years (an average of 62 years) participated in the LDCT-MLCS. The final cohort was comprised of 4762 (89.6%) patients. We have detected 291 (6.1%) Lung-RADS 3 lesions, 228 (4.8%) Lung- RADS 4A lesions and 196 (4.1%) Lung-RADS 4B/4X lesions. All 4B and 4X lesions were routed in accordance with the project's methodology and legislative documents. Malignant neoplasms were verified in 84 cases (1.76% of the cohort). Stage I-II lung cancer was actively detected in 40.3% of these individuals. For the first time in the Russian Federation we have calculated the number needed to screen (NNS) to identify one lung cancer (NNS=57) and to detect one Stage I lung cancer (NNS=207). Conclusions. Based on the global experience and our own practices, we argue that selective LDCT is the most systematic solution to the problem of early-stage lung cancer screening.


Sign in / Sign up

Export Citation Format

Share Document