The Effects of Gentamicin on the Activities of Glutathione Peroxidase and Superoxide Dismutase Enzymes and Malondialdehyde Levels in Heart Tissues of Guinea Pigs

1997 ◽  
Vol 14 (1) ◽  
pp. 47-52 ◽  
Author(s):  
H. Serdar Öztürk ◽  
Mustafa Kavutcu ◽  
Murat Kaçmaz ◽  
Orhan Canbolat ◽  
Ilker Durak
1990 ◽  
Vol 69 (1) ◽  
pp. 328-335 ◽  
Author(s):  
A. L. Harabin ◽  
J. C. Braisted ◽  
E. T. Flynn

Rats and guinea pigs were exposed to O2 at 2.8 ATA (HBO) delivered either continuously or intermittently (repeated cycles of 10 min of 100% O2 followed by 2.5 min of air). The O2 time required to produce convulsions and death was increased significantly in both species by intermittency. To determine whether changes in brain and lung superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHPx) correlated with the observed tolerance, enzyme activities were measured after short or long HBO exposures. For each exposure duration, one group received continuous and one intermittent HBO; O2 times were matched. HBO had marked effects on these enzymes: lung SOD increased (guinea pigs 47%, rats 88%) and CAT and GSHPx activities decreased (33%) in brain and lung. No differences were seen in lung GSHPx or brain CAT in rats or brain SOD in either species. In guinea pigs, but less so in rats, the observed changes in activity were usually modulated by intermittency. Increases in hematocrit, organ protein, and lung DNA, which may also reflect ongoing oxidative damage, were also slowed with intermittency in guinea pigs. Intermittency benefited both species by postponing gross symptoms of toxicity, but its modulation of changes in enzyme activities and other biochemical variables was more pronounced in guinea pigs than in rats, suggesting that there are additional mechanisms for tolerance.


2007 ◽  
pp. 105-112
Author(s):  
J Kovačeva ◽  
J Pláteník ◽  
M Vejražka ◽  
S Štípek ◽  
T Ardan ◽  
...  

Under normal conditions, antioxidants at the corneal surface are balanced with the production of reactive oxygen species without any toxic effects. Danger from oxidative stress appears when natural antioxidants are overwhelmed leading to antioxidant/prooxidant imbalance. The aim of the present study was to examine the activities of enzymes contributing to the antioxidant/prooxidant balance in normal corneal epithelium of various mammals. The enzyme activities of antioxidant superoxide dismutase and glutathione peroxidase, as well as prooxidant xanthine oxidoreductase/xanthine oxidase were examined using biochemical methods. Results show that superoxide dismutase activity is high in rabbits and guinea pigs, whereas in pigs the activity is low and in cows it is nearly absent. In contrast, glutathione peroxidase activity is high in cows, pigs and rabbits, whereas in guinea pigs the activity is low. As far as prooxidant enzymes are concerned, elevated xanthine oxidoreductase/xanthine oxidase activities were found in rabbits, lower activities in guinea pigs, very low activity in cows and no activity in pigs. In conclusion, the above results demonstrate inter-species variations in activities of enzymes participating in antioxidant/prooxidant balance in the corneal epithelium. It is suggested that the levels of antioxidant and prooxidant enzymes studied in the corneal epithelium might be associated with the diurnal or nocturnal activity of animals. UV rays decompose hydrogen peroxide to damaging hydroxyl radicals and perhaps for this reason large animals with diurnal activity (cow, pig) require more effective peroxide removal (high glutathione peroxidase activity) together with the suppression of peroxide production (low superoxide dismutase activity, low xanthine oxidoreductase activity).


Author(s):  
L. K. Parkhomenko ◽  
◽  
L. A. Strashok ◽  
S. I. Turchina ◽  
G. V. Kosovtsova ◽  
...  

Recently, interest in the problem of free radical oxidation in biological membranes, which is directly related to both the normal functioning of cells and the occurrence, course and outcome of many pathological conditions, has increased again in clinical medicine. The aim was to determine the role and impact of antioxidant defense in boys with hypoandrogenism. The study involved 75 adolescents with hypoandrogenism aged 13–18 years, who underwent a complex of clinical and laboratory examinations. All patients were conducted complex of anthropometric research and determination of the degree of delayed puberty, laboratory and instrumental examination. Free radical oxidation was determined by the levels of malondialdehyde, conjugated dienes, carbonated proteins, superoxide dismutase and catalase in the serum, and restored glutathione and glutathione peroxidase in whole blood. Based on their determination, the coefficient of oxidative stress was calculated. Statistical processing of results was performed using parametric and nonparametric methods. The study of indicators of the free radical oxidation process found that adolescents with hypoandrogenism have multidirectional changes in the oxidation of proteins and lipids, namely: the level of conjugated dienes increases, the concentration of malondialdehyde remains at the level of the control group, and the level of carbonated proteins tends to decrease. As for the activity of antioxidant protection enzymes, a significant decrease in the level of glutathione peroxidase was detected, while the level of superoxide dismutase and catalase remained at the level of normative indicators. Oxidative stress accompanies and is one of the pathogenetic links in the formation or maintenance of the state of hypoandrogenism in boys. This requires the use of antioxidants, the complex of which must be selected individually.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


1997 ◽  
Vol 99 ◽  
pp. S140
Author(s):  
Hüray Işlekel ◽  
Sertaç Işlekel ◽  
Gül Güner ◽  
Güldal Kirkali ◽  
Nurten Saydam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document