scholarly journals A phylogenomic analysis of the Actinomycetales mce operons

BMC Genomics ◽  
2007 ◽  
Vol 8 (1) ◽  
Author(s):  
Nicola Casali ◽  
Lee W Riley
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bryan Angelo P. Roxas ◽  
Jennifer Lising Roxas ◽  
Rachel Claus-Walker ◽  
Anusha Harishankar ◽  
Asad Mansoor ◽  
...  

AbstractClostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 799
Author(s):  
Ana G. Abril ◽  
Mónica Carrera ◽  
Karola Böhme ◽  
Jorge Barros-Velázquez ◽  
Benito Cañas ◽  
...  

The present work describes LC-ESI-MS/MS MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) analyses of tryptic digestion peptides from phages that infect mastitis-causing Staphylococcus aureus isolated from dairy products. A total of 1933 nonredundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 79 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, eighteen of the phage origin peptides found were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides that are present in closely related phages and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.


2007 ◽  
Vol 45 (3) ◽  
pp. 942-951 ◽  
Author(s):  
Falko Roeding ◽  
Silke Hagner-Holler ◽  
Hilke Ruhberg ◽  
Ingo Ebersberger ◽  
Arndt von Haeseler ◽  
...  

Antibiotics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 22
Author(s):  
Nasim Safaei ◽  
Yvonne Mast ◽  
Michael Steinert ◽  
Katharina Huber ◽  
Boyke Bunk ◽  
...  

Antibiotic producers have mainly been isolated from soil, which often has led to the rediscovery of known compounds. In this study, we identified the freshwater snail Physa acuta as an unexplored source for new antibiotic producers. The bacterial diversity associated with the snail was characterized by a metagenomic approach using cultivation-independent high-throughput sequencing. Although Actinobacteria represented only 2% of the bacterial community, the focus was laid on the isolation of the genus Streptomyces due to its potential to produce antibiotics. Three Streptomyces strains (7NS1, 7NS2 and 7NS3) were isolated from P. acuta, and the antimicrobial activity of the crude extracts were tested against a selection of Gram-positive and Gram-negative bacteria and fungi. 7NS3 showed the strongest activity against Gram-positive bacteria and, thus, was selected for genome sequencing and a phylogenomic analysis. 7NS3 represents a novel Streptomyces species, which was deposited as Streptomyces sp. DSM 110735 at the Leibniz Institute-German Collection of Microorganisms and Cell Cultures (DSMZ). Bioassay-guided high-performance liquid chromatography (HPLC) and high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analyses of crude extract fractions resulted in the detection of four compounds, one of which matched the compound characteristics of emycin A, an angucycline-like aromatic polyketide. Genome mining studies based on the whole-genome sequence of 7NS3 resulted in the identification of a gene cluster potentially coding for emycin A biosynthesis. Our study demonstrates that freshwater snails like P. acuta can represent promising reservoirs for the isolation of new antibiotic-producing actinobacterial species.


2021 ◽  
Author(s):  
Tao Pei ◽  
Yang Liu ◽  
Juan Du ◽  
Kun peng Huang ◽  
Ming rong Deng ◽  
...  

Abstract A novel Gram-staining-negative and short-rod-shaped bacterial strain designated as 1NDH52T was isolated from tidal flat sediments and characterized by using a polyphasic taxonomic approach. The predominant cellular fatty acids of strain 1NDH52T were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C14:0 2-OH; the major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid; the major respiratory quinones were Q-10 and Q-9. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1NDH52T belonged to the genus Croceicoccus with high similarities to the close type strains Croceicoccus pelagius Ery9T, Croceicoccus sediminis S2-4-2T and Croceicoccus bisphenolivorans H4T. Phylogenomic analysis indicated that strain 1NDH52T formed an independent branch distinct from the known type strains of this genus. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain 1NDH52T and the three type strains above were well below thresholds of 70% DDH and 95-96% ANI for species definition, implying that strain 1NDH52T should represent a novel genospecies. The genomic DNA G + C content was 62.6%. The carotenoids production of the novel strain was determined by the detection of the pigment absorption spectrum and the identification of the complete biosynthetic gene cluster in its genome. Based on the phenotypic and genotypic characteristics, strain 1NDH52T is concluded to represent a novel species of the genus Croceicoccus, for which the name Croceicoccus gelatinilyticus sp. nov., is proposed. The type strain of the species is 1NDH52T (= GDMCC 1.2381T = KCTC 82668T). The description of the genus Croceicoccus has also been emended.


Author(s):  
Juan Du ◽  
Yang Liu ◽  
Tao Pei ◽  
Ming-Rong Deng ◽  
Honghui Zhu

A novel Gram-stain-negative, aerobic and rod-shaped bacterial strain designated as 6D45AT was isolated from mangrove soil and characterized using a polyphasic taxonomic approach. Strain 6D45AT was found to grow at 10–37 °C (optimum, 28 °C), at pH 6.0–9.0 (optimum, 7.0) and in 0–5 % (w/v) NaCl (optimum, 2%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 6D45AT fell into the genus Salipiger and shared 99.1 % identity with the closest type strain Salipiger pacificus CGMCC 1.3455T and less than 97.2 % identity with other type strains of this genus. The 34.8 % digital DNA–DNA hybridization (dDDH) and 88.3 % average nucleotide identity (ANI) values between strain 6D45AT and the closest relative above were well below recognized thresholds of 70 % DDH and 95–96 % ANI for species definition, implying that strain 6D45AT should represent a novel genospecies. The phylogenomic analysis indicated that strain 6D45AT formed an independent branch distinct from reference strains. The predominant cellular fatty acid of strain 6D45AT was summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c, 66.9 %); the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, two unidentified glycolipids and an unknown lipid; the respiratory quinone was Q-10. The genomic DNA G+C content was 66.5 mol %. Based on the phenotypic and genotypic characteristics, strain 6D45AT is concluded to represent a novel species of the genus Salipiger , for which the name Salipiger mangrovisoli sp. nov., is proposed. The type strain of the species is 6D45AT (=GDMCC 1.1960T=KCTC 82334T). We also propose the reclassification of Paraphaeobacter pallidus as Salipiger pallidus comb. nov. and ‘ Pelagibaca abyssi ’ as a species of the genus Salipiger .


Sign in / Sign up

Export Citation Format

Share Document