scholarly journals Gene Ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains

2009 ◽  
Vol 9 (Suppl 1) ◽  
pp. S4 ◽  
Author(s):  
Magdalen Lindeberg ◽  
Bryan S Biehl ◽  
Jeremy D Glasner ◽  
Nicole T Perna ◽  
Alan Collmer ◽  
...  
2007 ◽  
Vol 51 (1) ◽  
pp. 32-46 ◽  
Author(s):  
Chia-Fong Wei ◽  
Brian H. Kvitko ◽  
Rena Shimizu ◽  
Emerson Crabill ◽  
James R. Alfano ◽  
...  

2004 ◽  
Vol 53 (11) ◽  
pp. 1145-1149 ◽  
Author(s):  
Rosanna Mundy ◽  
Claire Jenkins ◽  
Jun Yu ◽  
Henry Smith ◽  
Gad Frankel

Enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli are important diarrhoeagenic pathogens; infection is dependent on translocation of a number of type III effector proteins. Until recently all the known effectors were encoded on the LEE pathogenicity island, which also encodes the adhesin intimin and the type III secretion apparatus. Recently, a novel non-LEE effector protein, EspI/NleA, which is required for full virulence in vivo and is encoded on a prophage, was identified. The aim of this study was to determine the distribution of espI among clinical EHEC and EPEC isolates. espI was detected in 86 % and 53 % of LEE+ EHEC and EPEC strains, respectively. Moreover, the espI gene was more commonly found in patients suffering from a more severe disease.


Microbiology ◽  
2005 ◽  
Vol 151 (1) ◽  
pp. 269-280 ◽  
Author(s):  
Ute Kabisch ◽  
Angelika Landgraf ◽  
Jana Krause ◽  
Ulla Bonas ◽  
Jens Boch

The hrp-type III secretion (TTS) system is a key pathogenicity factor of the plant pathogen Pseudomonas syringae pv. tomato DC3000 that translocates effector proteins into the cytosol of the eukaryotic host cell. The translocation of a subset of effectors is dependent on specific chaperones. In this study an operon encoding a TTS chaperone (ShcS1) and the truncated effector HopS1′ was characterized. Yeast two-hybrid analysis and pull-down assays demonstrated that these proteins interact. Using protein fusions to AvrRpt2 it was shown that ShcS1 facilitates the translocation of HopS1′, suggesting that ShcS1 is a TTS chaperone for HopS1′ and that amino acids 1 to 118 of HopS1′ are required for translocation. P. syringae pv. tomato DC3000 carries two shcS1 homologues, shcO1 and shcS2, which are located in different operons, and both operons include additional putative effector genes. Transcomplementation experiments showed that ShcS1 and ShcO1, but not ShcS2, can facilitate the translocation of HopS1′ : : AvrRpt2. To characterize the specificities of the putative chaperones, yeast two-hybrid interaction studies were performed between the three chaperones and putative target effectors. These experiments showed that both ShcS1 and ShcO1 bind to two different effectors, HopS1′ and HopO1-1, that share only 16 % amino acid sequence identity. Using gel filtration it was shown that ShcS1 forms homodimers, and this was confirmed by yeast two-hybrid experiments. In addition, ShcS1 is also able to form heterodimers with ShcO1. These data demonstrate that ShcS1 and ShcO1 are exceptional class IA TTS chaperones because they can bind more than one target effector.


2009 ◽  
Vol 22 (9) ◽  
pp. 1069-1080 ◽  
Author(s):  
Ming Guo ◽  
Fang Tian ◽  
Yashitola Wamboldt ◽  
James R. Alfano

The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern–triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens(pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1-induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both.


2016 ◽  
Vol 85 (2) ◽  
Author(s):  
Kristina Creuzburg ◽  
Cristina Giogha ◽  
Tania Wong Fok Lung ◽  
Nichollas E. Scott ◽  
Sabrina Mühlen ◽  
...  

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a gastrointestinal pathogen that utilizes a type III secretion system (T3SS) to inject an array of virulence effector proteins into host enterocytes to subvert numerous cellular processes for successful colonization and dissemination. The T3SS effector NleD is a 26-kDa zinc metalloprotease that is translocated into host enterocytes, where it directly cleaves and inactivates the mitogen-activated protein kinase signaling proteins JNK and p38. Here a library of 91 random transposon-based, in-frame, linker insertion mutants of NleD were tested for their ability to cleave JNK and p38 during transient transfection of cultured epithelial cells. Immunoblot analysis of p38 and JNK cleavage showed that 7 mutant derivatives of NleD no longer cleaved p38 but maintained the ability to cleave JNK. Site-directed mutation of specific regions surrounding the insertion sites within NleD revealed that a single amino acid, R203, was essential for cleavage of p38 but not JNK in a direct in vitro cleavage assay, in transiently transfected cells, or in EPEC-infected cells. Mass spectrometry analysis narrowed the cleavage region to within residues 187 and 213 of p38. Mutation of residue R203 within NleD to a glutamate residue abolished the cleavage of p38 and impaired the ability of NleD to inhibit AP-1-dependent gene transcription of a luciferase reporter. Furthermore, the R203 mutation abrogated the ability of NleD to dampen interleukin-6 production in EPEC-infected cells. Overall, this work provides greater insight into substrate recognition and specificity by the type III effector NleD.


2006 ◽  
Vol 19 (11) ◽  
pp. 1167-1179 ◽  
Author(s):  
Adriana O. Ferreira ◽  
Christopher R. Myers ◽  
Jeffrey S. Gordon ◽  
Gregory B. Martin ◽  
Monica Vencato ◽  
...  

Pseudomonas syringae pv. tomato DC3000 is a model pathogen of tomato and Arabidopsis that uses a hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS) to deliver virulence effector proteins into host cells. Expression of the Hrp system and many effector genes is activated by the HrpL alternative sigma factor. Here, an open reading frame-specific whole-genome microarray was constructed for DC3000 and used to comprehensively identify genes that are differentially expressed in wild-type and ΔhrpL strains. Among the genes whose differential regulation was statistically significant, 119 were upregulated and 76 were downregulated in the wild-type compared with the ΔhrpL strain. Hierarchical clustering revealed a subset of eight genes that were upregulated particularly rapidly. Gibbs sampling of regions upstream of HrpL-activated op-erons revealed the Hrp promoter as the only identifiable regulatory motif and supported an iterative refinement involving real-time polymerase chain reaction testing of additional HrpL-activated genes and refinements in a hidden Markov model that can be used to predict Hrp promoters in P. syringae strains. This iterative bioinformatic-experimental approach to a comprehensive analysis of the HrpL regulon revealed a mix of genes controlled by HrpL, including those encoding most type III effectors, twin-arginine transport (TAT) substrates, other regulatory proteins, and proteins involved in the synthesis or metabolism of phyto-hormones, phytotoxins, and myo-inositol. This analysis provides an extensively verified, robust method for predicting Hrp promoters in P. syringae genomes, and it supports subsequent identification of effectors and other factors that likely are important to the host-specific virulence of P. syringae.


2003 ◽  
Vol 16 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Derrick E. Fouts ◽  
Jorge L. Badel ◽  
Adela R. Ramos ◽  
Ryan A. Rapp ◽  
Alan Collmer

The plant pathogenic species Pseudomonas syringae is divided into numerous pathovars based on host specificity. For example, P. syringae pv. tomato DC3000 is pathogenic on tomato and Arabidopsis, whereas P. syringae pv. syringae 61 is pathogenic on bean. The ability of P. syringae strains to elicit the hypersensitive response (HR) in non-hosts or be pathogenic (or parasitic) in hosts is dependent on the Hrp (type III secretion) system and effector proteins this system is thought to inject into plant cells. To test the role of the Hrp system in determining host range, the hrp/hrc gene cluster (hrpK through hrpR) was deleted from DC3000 and complemented in trans with the orthologous cluster from strain 61. Mutant CUCPB5114 expressing the bean pathogen Hrp system on plasmid pCPP2071 retained the ability of wild-type DC3000 to elicit the HR in bean, to grow and cause bacterial speck in tomato, and to elicit a cultivar-specific (gene-for-gene) HR in tomato plants carrying the Pto resistance gene. However, the symptoms produced in compatible tomato plants involved markedly reduced chlorosis, and CUCPB5114(pCPP2071) did not grow or produce symptoms in Arabidopsis Col-0 although it was weakly virulent in NahG Arabidopsis. A hypersensitive-like collapse was produced by CUCPB5114(pCPP2071) in Arabidopsis Col-0 at 1 × 107 CFU/ml, but only if the bacteria also expressed AvrB, which is recognized by the RPM1 resistance gene in Col-0 and confers incompatibility. These observations support the concept that the P. syringae effector proteins, rather than secretion system components, are the primary determinants of host range at both the species and cultivar levels of host specificity.


Sign in / Sign up

Export Citation Format

Share Document