scholarly journals New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol

2012 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Karla Martínez-Gómez ◽  
Noemí Flores ◽  
Héctor M Castañeda ◽  
Gabriel Martínez-Batallar ◽  
Georgina Hernández-Chávez ◽  
...  
2000 ◽  
Vol 182 (6) ◽  
pp. 1632-1640 ◽  
Author(s):  
Bangdong Wei ◽  
Sooan Shin ◽  
David LaPorte ◽  
Alan J. Wolfe ◽  
Tony Romeo

ABSTRACT The csrA gene encodes a small RNA-binding protein, which acts as a global regulator in Escherichia coli and other bacteria (T. Romeo, Mol. Microbiol. 29:1321–1330, 1998). Its key regulatory role in central carbon metabolism, both as an activator of glycolysis and as a potent repressor of glycogen biosynthesis and gluconeogenesis, prompted us to examine the involvement ofcsrA in acetate metabolism and the tricarboxylic acid (TCA) cycle. We found that growth of csrA rpoS mutant strains was very poor on acetate as a sole carbon source. Surprisingly, growth also was inhibited specifically by the addition of modest amounts of acetate to rich media (e.g., tryptone broth). Cultures grown in the presence of ≥25 mM acetate consisted substantially of glycogen biosynthesis (glg) mutants, which were no longer inhibited by acetate. Several classes of glgmutations were mapped to known and novel loci. Several hypotheses were examined to provide further insight into the effects of acetate on growth and metabolism in these strains. We determined thatcsrA positively regulates acs(acetyl-coenzyme A synthetase; Acs) expression and isocitrate lyase activity without affecting key TCA cycle enzymes or phosphotransacetylase. TCA cycle intermediates or pyruvate, but not glucose, galactose, or glycerol, restored growth and prevented theglg mutations in the presence of acetate. Furthermore, amino acid uptake was inhibited by acetate specifically in thecsrA rpoS strain. We conclude that central carbon flux imbalance, inhibition of amino acid uptake, and a deficiency in acetate metabolism apparently are combined to cause metabolic stress by depleting the TCA cycle.


1998 ◽  
Vol 64 (3) ◽  
pp. 1079-1085 ◽  
Author(s):  
Lourdes L. Bermejo ◽  
Neil E. Welker ◽  
Eleftherios T. Papoutsakis

ABSTRACT A synthetic acetone operon (ace4) composed of fourClostridium acetobutylicum ATCC 824 genes (adc,ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed inE. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. colistrains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided.


2008 ◽  
Vol 76 (12) ◽  
pp. 5760-5767 ◽  
Author(s):  
Andrew T. Anfora ◽  
David K. Halladin ◽  
Brian J. Haugen ◽  
Rodney A. Welch

ABSTRACT In vivo accumulation of d-serine by Escherichia coli CFT073 leads to elevated expression of PAP fimbriae and hemolysin by an unknown mechanism. Loss of d-serine catabolism by CFT073 leads to a competitive advantage during murine urinary tract infection (UTI), but loss of both d- and l-serine catabolism results in attenuation. Serine is the first amino acid to be consumed in closed tryptone broth cultures and precedes the production of acetyl phosphate, a high-energy molecule involved in intracellular signaling, and the eventual secretion of acetate. We propose that the colonization defect associated with the loss of serine catabolism is due to perturbations of acetate metabolism. CFT073 grows more rapidly on acetogenic substrates than does E. coli K-12 isolate MG1655. As shown by transcription microarray results, d-serine is catabolized into acetate via the phosphotransacetylase (pta) and acetate kinase (ackA) genes while downregulating expression of acetyl coenzyme A synthase (acs). CFT073 acs, which is unable to reclaim secreted acetate, colonized mouse bladders and kidneys in the murine model of UTI indistinguishably from the wild type. Both pta and ackA are involved in the maintenance of intracellular acetyl phosphate. CFT073 pta and ackA mutants were screened to investigate the role of acetyl phosphate in UTI pathogenesis. Both single mutants are at a competitive disadvantage relative to the wild type in the kidneys but normally colonize the bladder. CFT073 ackA pta was attenuated in both the bladder and the kidneys. Thus, we demonstrate that CFT073 is adapted to acetate metabolism as a result of requiring a proper cycling of the acetyl phosphate pathway for colonization of the upper urinary tract.


2003 ◽  
Vol 185 (8) ◽  
pp. 2563-2570 ◽  
Author(s):  
Joseph A. Lesley ◽  
Carey D. Waldburger

ABSTRACT The PhoP-PhoQ two-component system regulates the transcription of numerous genes in response to changes in extracellular divalent cation concentration and pH. Here we demonstrate that the Escherichia coli PhoP-PhoQ two-component system also responds to acetate. Signaling by the E. coli PhoP-PhoQ system was repressed during growth in acetate (≥25 mM) in a PhoQ-dependent manner. The periplasmic sensor domain of PhoQ was not required for acetate to repress signaling. Acetate-mediated repression of the PhoP-PhoQ system was not related to changes in the intracellular concentration of acetate metabolites such as acetyl-phosphate or acetyladenylate. Genetic analysis of acetate metabolism pathways suggested that a perturbation of acetyl coenzyme A turnover was the cause of decreased PhoP-PhoQ signaling during growth in acetate. Consistent with this hypothesis, intracellular acetyl coenzyme A levels rose during growth in the presence of exogenous acetate. Acetyl coenzyme A inhibited the autokinase activity of PhoQ in vitro, suggesting that the in vivo repressing effect may be due to a direct inhibition mechanism.


2021 ◽  
Vol 35 (1) ◽  
pp. 425-436
Author(s):  
Yingxue Liao ◽  
Zhijian Ni ◽  
Jinyong Wu ◽  
Zhongkui Li ◽  
Yuanfei Ge ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evgeniya Schastnaya ◽  
Zrinka Raguz Nakic ◽  
Christoph H. Gruber ◽  
Peter Francis Doubleday ◽  
Aarti Krishnan ◽  
...  

AbstractProtein serine/threonine/tyrosine (S/T/Y) phosphorylation is an essential and frequent post-translational modification in eukaryotes, but historically has been considered less prevalent in bacteria because fewer proteins were found to be phosphorylated and most proteins were modified to a lower degree. Recent proteomics studies greatly expanded the phosphoproteome of Escherichia coli to more than 2000 phosphorylation sites (phosphosites), yet mechanisms of action were proposed for only six phosphosites and fitness effects were described for 38 phosphosites upon perturbation. By systematically characterizing functional relevance of S/T/Y phosphorylation in E. coli metabolism, we found 44 of the 52 mutated phosphosites to be functional based on growth phenotypes and intracellular metabolome profiles. By effectively doubling the number of known functional phosphosites, we provide evidence that protein phosphorylation is a major regulation process in bacterial metabolism. Combining in vitro and in vivo experiments, we demonstrate how single phosphosites modulate enzymatic activity and regulate metabolic fluxes in glycolysis, methylglyoxal bypass, acetate metabolism and the split between pentose phosphate and Entner-Doudoroff pathways through mechanisms that include shielding the substrate binding site, limiting structural dynamics, and disrupting interactions relevant for activity in vivo.


1998 ◽  
Vol 180 (4) ◽  
pp. 985-988 ◽  
Author(s):  
Rina Barak ◽  
Walid N. Abouhamad ◽  
Michael Eisenbach

ABSTRACT Escherichia coli strains overproducing the response regulator CheY respond to acetate by increasing their clockwise bias of flagellar rotation, even when they lack other chemotaxis proteins. With acetate metabolism mutants, we demonstrate that both acetate kinase and acetyl coenzyme A synthetase are involved in this response. Thus, a response was observed when one of these enzymes was missing but not when both were absent.


Sign in / Sign up

Export Citation Format

Share Document