scholarly journals Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

2009 ◽  
Vol 8 (1) ◽  
pp. 44 ◽  
Author(s):  
Aníbal E Carbajo ◽  
Carolina Vera ◽  
Paula LM González
2021 ◽  

Abstract This book is a collection of 77 expert opinions arranged in three sections. Section 1 on "Climate" sets the scene, including predictions of future climate change, how climate change affects ecosystems, and how to model projections of the spatial distribution of ticks and tick-borne infections under different climate change scenarios. Section 2 on "Ticks" focuses on ticks (although tick-borne pathogens creep in) and whether or not changes in climate affect the tick biosphere, from physiology to ecology. Section 3 on "Disease" focuses on the tick-host-pathogen biosphere, ranging from the triangle of tick-host-pathogen molecular interactions to disease ecology in various regions and ecosystems of the world. Each of these three sections ends with a synopsis that aims to give a brief overview of all the expert opinions within the section. The book concludes with Section 4 (Final Synopsis and Future Predictions). This synopsis attempts to summarize evidence provided by the experts of tangible impacts of climate change on ticks and tick-borne infections. In constructing their expert opinions, contributors give their views on what the future might hold. The final synopsis provides a snapshot of their expert thoughts on the future.


2017 ◽  
Vol 56 (3) ◽  
pp. 615-631 ◽  
Author(s):  
Zydi Teqja ◽  
Albert Kopali ◽  
Zamir Libohova ◽  
Phillip R. Owens

AbstractMaps of plant hardiness zones are useful tools for determining the extreme limits for the survival of plants. Exploration of projected climate change effects on hardiness zones can help identify areas most affected by climate change. Such studies are important in areas with high risks related to climate change, such as the Mediterranean Sea region. The objectives of this study were to (i) map plant hardiness zones for Albania and (ii) assess the projected effects of climate scenarios on the distribution of hardiness zones. Hardiness zones were affected by IPCC AR5 climate scenarios. The most extreme hardiness zone (6a) disappeared while a new, warmer zone (10b) appeared, reflecting rising temperature trends during the cold season. The shifts in spatial distribution of hardiness zones may represent opportunities for introducing new species to Albanian agriculture and forestry; however, the introduction of new species would require further studies on the variability of plant hardiness zones at local scales.


2011 ◽  
Vol 41 (10) ◽  
pp. 1948-1960 ◽  
Author(s):  
Jean-Noël Candau ◽  
Richard A. Fleming

Predicting the effect of climate change on insect populations is critical to improve the reliability of forest management plans, wood supply projections, and pest protection programs. In this study, we use an empirical model to relate the spatial distribution of past defoliation by spruce budworm ( Choristoneura fumiferana Clem.) in Ontario to bioclimatic variables. We then apply data from six climate change scenarios to this model to project potential changes in the distribution of defoliation for 2011–2040. The spatial distribution of historical defoliation was found to be related to winter maximum and minimum temperatures, forest content in balsam fir ( Abies balsamea (L.) Mill.) and white spruce ( Picea glauca (Moench) Voss), and spring and summer minimum temperatures. All six climate change scenarios project broadly similar changes in the spatial patterns of defoliation: (i) an extension of the northern limit of defoliation as far as available data go or close to it, (ii) a decrease in the frequency of defoliation in the center of the historical defoliation belt, and (iii) a persistence of the southern limit of defoliation. This leads to a projected increase of the total area defoliated of between 22.8% and 25.5%, while the mean frequency of defoliation, calculated over the whole study area, would slightly increase (+1%) or decrease (–17.7% to –2.9%).


2021 ◽  
pp. 38-43
Author(s):  
Ram Raghavan ◽  
Roman Ganta

Abstract This chapter focuses on spatial distribution models (SDMs) that are essential to producing reliable models of tick distributions, both in the present time and in the future, under climate change scenarios. It highlights the opinion that careful consideration of the methods is necessary in building SDMs, model assumptions, the limitations in predictions and making a careful interpretation of predictions, if possible, supported by field observations.


2020 ◽  
Vol 9 (12) ◽  
pp. 724
Author(s):  
Qian Xue ◽  
Wei Song

Climatic changes significantly impact the socio-economic system. Compared with research on the impacts of climate change on the agricultural economic system, researches on the impacts on the industrial economic system are still scarce. This is mainly because of the difficulties in matching climate data with socio-economic data in terms of spatiotemporal resolution, which has greatly limited the exposure degree assessment and the risk assessment of industrial economic systems. In view of this, based on remote sensing inversion and multi-source data fusion, we generated kilometer-grid data of China’s industrial output in 2010 and built the spatial distribution model of industrial output, based on random forest, to simulate the spatial distribution of China’s industrial output under different climate change scenarios. The results showed that (1) our built spatial distribution simulation model of China’s industrial output under different climate change scenarios had an accuracy of up to 93.77%; (2) from 2010 to 2050, the total growth of China’s industrial output under scenario RCP8.5 is estimated to be 4.797% higher than that under scenario RCP4.5; and (3) the increasing rate of the average annual growth rate of China’s industrial output slows down significantly under both scenarios from 2030 to 2050, and the average annual growth rate will decrease by 7.31 and 6.54%, respectively, under scenarios RCP8.5 and RCP4.5 compared with that from 2010 to 2020.


Sign in / Sign up

Export Citation Format

Share Document