scholarly journals Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR gamma in adipose tissue in type 2 diabetic KK-Ay mice

2013 ◽  
Vol 10 (1) ◽  
pp. 16 ◽  
Author(s):  
Zhi-Hong Yang ◽  
Hiroko Miyahara ◽  
Yusuke Iwasaki ◽  
Jiro Takeo ◽  
Masashi Katayama
2010 ◽  
Vol 28 (7) ◽  
pp. 1471-1481 ◽  
Author(s):  
Masaru Iwai ◽  
Harumi Kanno ◽  
Yumiko Tomono ◽  
Shinji Inaba ◽  
Izumi Senba ◽  
...  

2020 ◽  
Author(s):  
William Lövfors ◽  
Jona Ekström ◽  
Cecilia Jönsson ◽  
Peter Strålfors ◽  
Gunnar Cedersund ◽  
...  

Lipolysis and the release of fatty acids to supply energy to other organs, such as between meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intracellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms behind this elevation are not fully known, and to increase the knowledge a link between the systemic circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here, we use mathematical modelling to provide such a link. We examine mechanisms of insulin action by combining in vivo and in vitro data into an integrated mathematical model that can explain all data. Furthermore, the model can describe independent data not used for training the model. We show the usefulness of the model by simulating new and more challenging experimental setups in silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference in such simulations between individuals with and without type 2 diabetes. Our work provides a new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and type 2 diabetic conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261681
Author(s):  
William Lövfors ◽  
Jona Ekström ◽  
Cecilia Jönsson ◽  
Peter Strålfors ◽  
Gunnar Cedersund ◽  
...  

Lipolysis and the release of fatty acids to supply energy fuel to other organs, such as between meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intracellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms behind this elevation are not fully known, and to increase the knowledge a link between the systemic circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here, we use mathematical modelling to provide such a link. We examine mechanisms of insulin action by combining in vivo and in vitro data into an integrated mathematical model that can explain all data. Furthermore, the model can describe independent data not used for training the model. We show the usefulness of the model by simulating new and more challenging experimental setups in silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference in such simulations between individuals with and without type 2 diabetes. Our work provides a new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and type 2 diabetic conditions.


Sign in / Sign up

Export Citation Format

Share Document