scholarly journals Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance

2012 ◽  
Vol 9 (1) ◽  
pp. 28 ◽  
Author(s):  
Brandon D Spradley ◽  
Kristy R Crowley ◽  
Chih-Yin Tai ◽  
Kristina L Kendall ◽  
David H Fukuda ◽  
...  
1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3822
Author(s):  
Azis Boing Sitanggang ◽  
Jessica Eka Putri ◽  
Nurheni Palupi ◽  
Emmanuel Hatzakis ◽  
Elvira Syamsir ◽  
...  

The Angiotensin-I-converting enzyme (ACE) is a peptidase with a significant role in the regulation of blood pressure. Within this work, a systematic review on the enzymatic preparation of Angiotensin-I-Converting Enzyme inhibitory (ACEi) peptides is presented. The systematic review is conducted by following PRISMA guidelines. Soybeans and velvet beans are known to have high protein contents that make them suitable as sources of parent proteins for the production of ACEi peptides. Endopeptidase is commonly used in the preparation of soybean-based ACEi peptides, whereas for velvet bean, a combination of both endo- and exopeptidase is frequently used. Soybean glycinin is the preferred substrate for the preparation of ACEi peptides. It contains proline as one of its major amino acids, which exhibits a potent significance in inhibiting ACE. The best enzymatic treatments for producing ACEi peptides from soybean are as follows: proteolytic activity by Protease P (Amano-P from Aspergillus sp.), a temperature of 37 °C, a reaction time of 18 h, pH 8.2, and an E/S ratio of 2%. On the other hand, the best enzymatic conditions for producing peptide hydrolysates with high ACEi activity are through sequential hydrolytic activity by the combination of pepsin-pancreatic, an E/S ratio for each enzyme is 10%, the temperature and reaction time for each proteolysis are 37 °C and 0.74 h, respectively, pH for pepsin is 2.0, whereas for pancreatin it is 7.0. As an underutilized pulse, the studies on the enzymatic hydrolysis of velvet bean proteins in producing ACEi peptides are limited. Conclusively, the activity of soybean-based ACEi peptides is found to depend on their molecular sizes, the amino acid residues, and positions. Hydrophobic amino acids with nonpolar side chains, positively charged, branched, and cyclic or aromatic residues are generally preferred for ACEi peptides.


1973 ◽  
Vol 4 (44) ◽  
pp. no-no
Author(s):  
V. T. BRAICHENKO ◽  
Z. F. SOLOMKO ◽  
M. S. MALINOVSKII ◽  
R. F. RED'KO
Keyword(s):  

Author(s):  
Anya Ellerbroek ◽  
Jose Antonio

Purpose: The purpose of this pilot study was to assess the acute effects of consuming pre-workout supplements on indices of muscular strength, endurance and mood states. Methods: In a double- blind, placebo-controlled, randomized crossover design, fourteen moderate to highly-trained recreational athletes (7 female, 7 male) participated in this investigation. Subjects came to the lab twice between testing sessions. They consumed either pre supplement (mixed with 8 to 12 ounces of water) or placebo 30-minutes prior to testing. The pre-workout supplement combination (Athelite Nutrition Inc.) contained 15.62 grams per serving, 25 kcals, that consisted of a proprietary blend including caffeine (as green coffee bean extract), L-theanine, black pepper extract, micronized creatine monohydrate, CarnoSyn® beta-alanine, Huperzine A, N-Acetyl L-carnitine, Nitrosigine®), or placebo. The placebo was a similar tasting drink with an equal amount of caffeine. Their body composition was assessed via the DEXA (Hologic Model Horizon W). Participants’ mood was also assessed via a profile mood states questionnaire (POMS) 30 minutes after product or placebo was consumed. After taking the profile mood states questionnaire, subjects had their exercise performance assessed via the 1-repition maximum bench press followed by bench press repetitions to failure at 60% of 1-repetition maximum with 30 seconds rest between sets (3 total sets). Results: There were significant differences (p Conclusion: The results demonstrated that the acute consumption of pre-workout supplements can enhance muscular endurance. Caffeine alone cannot explain effect on muscular endurance since the placebo also contained caffeine. However, the supplements had no effect on strength or mood states.


1962 ◽  
Vol 40 (1) ◽  
pp. 739-747 ◽  
Author(s):  
I. Sankoff ◽  
T. L. Sourkes

α-Methyl-DL-tryptophan, injected intraperitoneally into rats, has a weight-depressing action lasting up to 72 hours. Dosages in the range 0.015–2.0 millimoles/kg body weight (3.3–436 mg/kg) are effective. Attempts to antagonize the weight-depressing action by giving essential amino acids and B vitamins were unsuccessful. Metabolic studies have shown that about half the injected dose of the compound (or its derivatives), as measured by the Hopkins–Cole glyoxylic acid reaction, is excreted in the urine in 24 hours; most of this appears during the first 4 hours after the injection. Ina search for an explanation for the weight-depressing action of α-methyltryptophan, tryptophan pyrrolase activity in the liver was estimated. This enzymic activity increases for 8 hours after the injection of α-methyltryptophan, and thereafter remains high for 72 hours. Tryptophan-injected animals showed increases in tryptophan pyrrolase level for 1.5 hours, and a return to normal concentrations within 24 hours. Other α-methyl amino acids which were tested had no comparable effect on body weight.


2011 ◽  
Vol 197-198 ◽  
pp. 899-905 ◽  
Author(s):  
Chun Xiang Lin ◽  
Ming Hua Liu ◽  
Huai Yu Zhan

The spherical cellulose adsorbent was prepared by grafting acrylic acid onto the spherical cellulose beads prepared by NMMO method. The effecting factors, e.g., monomer concentration, initiator concentration, reaction temperature and reaction time were optimized by the orthogonal and signal-factor experiments and the structure of the adsorbent was characterized by FTIR and SEM. The graft mechanism was also discussed. Moreover, the spherical cellulose adsorbents were shown to behave as good sorbents for basic amino acids L-Arg, L-Lys and L-His.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kayla A. Carter ◽  
Christopher D. Simpson ◽  
Daniel Raftery ◽  
Marissa G. Baker

Objectives: Despite the widespread use of manganese (Mn) in industrial settings and its association with adverse neurological outcomes, a validated and reliable biomarker for Mn exposure is still elusive. Here, we utilize targeted metabolomics to investigate metabolic differences between Mn-exposed and -unexposed workers, which could inform a putative biomarker for Mn and lead to increased understanding of Mn toxicity.Methods: End of shift spot urine samples collected from Mn exposed (n = 17) and unexposed (n = 15) workers underwent a targeted assay of 362 metabolites using LC-MS/MS; 224 were quantified and retained for analysis. Differences in metabolite abundances between exposed and unexposed workers were tested with a Benjamini-Hochberg adjusted Wilcoxon Rank-Sum test. We explored perturbed pathways related to exposure using a pathway analysis.Results: Seven metabolites were significantly differentially abundant between exposed and unexposed workers (FDR ≤ 0.1), including n-isobutyrylglycine, cholic acid, anserine, beta-alanine, methionine, n-isovalerylglycine, and threonine. Three pathways were significantly perturbed in exposed workers and had an impact score >0.5: beta-alanine metabolism, histidine metabolism, and glycine, serine, and threonine metabolism.Conclusion: This is one of few studies utilizing targeted metabolomics to explore differences between Mn-exposed and -unexposed workers. Metabolite and pathway analysis showed amino acid metabolism was perturbed in these Mn-exposed workers. Amino acids have also been shown to be perturbed in other occupational cohorts exposed to Mn. Additional research is needed to characterize the biological importance of amino acids in the Mn exposure-disease continuum, and to determine how to appropriately utilize and interpret metabolomics data collected from occupational cohorts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunsheng Bai ◽  
Chao Wang ◽  
Lin Sun ◽  
Haiwen Xu ◽  
Yun Jiang ◽  
...  

The study was aimed to investigate the effect of moisture content on microbial communities, metabolites, fermentation quality, and aerobic stability during aerobic exposure in whole-plant corn silages preserved long time to improve the quality and aerobic stability of the silage during feed-out. Corn plants with two different moisture levels (high-moisture content, 680 g/kg; low-moisture content, 620 g/kg) were harvested at one-third and two-thirds milk-line stages, respectively, ensiled in laboratory-scale silos, and then sampled at 350 day after ensiling and at 2 and 5 day after opening to investigate bacterial and fungal communities, metabolites, and aerobic stability. High-moisture content increased aerobic stability and pH and decreased lactic acid and microbial counts in silages (P < 0.05). During aerobic exposure, the low-moisture silages had higher pH and lactic acid bacterial count and lower lactic acid than the high-moisture silages (P < 0.05); Acinetobacter sp. was the most main bacterial species in the silages; Candida glabrata and unclassified Candida had an increasing abundance and negatively correlation with aerobic stability of high-moisture silages (P < 0.05), while C. glabrata, Candida xylopsoci, unclassified Saccharomycetaceae, and unclassified Saccharomycetales negative correlated with aerobic stability of low-moisture silages (P < 0.05) with a rising Saccharomycetaceae; the silages had a reducing concentration of total metabolites (P < 0.05). Moreover, the high-moisture silages contained greater total metabolites, saturated fatty acids (palmitic and stearic acid), essential fatty acids (linoleic acid), essential amino acids (phenylalanine), and non-essential amino acids (alanine, beta-alanine, and asparagine) than the low-moisture silages at 5 day of opening (P < 0.05). Thus, the high-moisture content improved the aerobic stability. Acinetobacter sp. and Candida sp. dominated the bacterial and fungal communities, respectively; Candida sp. resulted in the aerobic deterioration in high-moisture silages, while the combined activities of Candida sp. and Saccharomycetaceae sp. caused the aerobic deterioration in low-moisture silages. The greater aerobic stability contributed to preserve the palmitic acid, stearic acid, linoleic acid, phenylalanine, alanine, beta-alanine, and asparagine during aerobic exposure.


1986 ◽  
Vol 251 (1) ◽  
pp. F125-F131
Author(s):  
R. W. Chesney ◽  
N. Gusowski ◽  
M. Padilla ◽  
S. Lippincott

Alterations in the intake of sulfur amino acids (SAA) changes the rat renal brush-border membrane uptake of the beta-amino acid, taurine. A low-SAA diet enhances and a high-taurine diet reduces uptake (Chesney et al., Kidney Int. 24: 588-594, 1983). Neither the low-SAA diet nor the high-taurine diet alters the time course or concentration-dependent accumulation of the sulfur amino acids methionine and cystine or of inorganic sulfate. By contrast the uptake of beta-alanine, another beta-amino acid that competes with taurine, is greater in animals on the low-SAA diet. The high-taurine diet does not change beta-alanine uptake. The plasma levels of taurine are altered by dietary change, but not the values for methionine and cystine. This study indicates that renal adaptation is expressed for beta-alanine, a nonsulfur-containing beta-amino acid. By contrast, methionine, cystine, and sulfate, which participate in a variety of synthetic and conjugative processes, are not conserved by the renal brush-border surface following ingestion of either a low-methionine and -cystine diet or high-taurine diet.


Sign in / Sign up

Export Citation Format

Share Document