scholarly journals An in silico approach combined with in vivo experiments enables the identification of a new protein whose overexpression can compensate for specific respiratory defects in Saccharomyces cerevisiae

2011 ◽  
Vol 5 (1) ◽  
pp. 173 ◽  
Author(s):  
Annie Glatigny ◽  
Lise Mathieu ◽  
Christopher J Herbert ◽  
Geneviève Dujardin ◽  
Brigitte Meunier ◽  
...  
2008 ◽  
Vol 41 (2) ◽  
pp. 4234-4239 ◽  
Author(s):  
B. Kovatchev ◽  
D.M. Raimondo ◽  
M. Breton ◽  
S. Patek ◽  
C. Cobelli

Author(s):  
Neetu Agrawal ◽  
Ahsas Goyal

: Due to the extremely contagious nature of SARS-COV-2, it presents a significant threat to humans worldwide. A plethora of studies are going on all over the world to discover the drug to fight SARS-COV-2. One of the most promising targets is RNA-dependent RNA polymerase (RdRp), responsible for viral RNA replication in host cells. Since RdRp is a viral enzyme with no host cell homologs, it allows the development of selective SARS-COV-2 RdRp inhibitors. A variety of studies used in silico approaches for virtual screening, molecular docking, and repurposing of already existing drugs and phytochemicals against SARS-COV-2 RdRp. This review focuses on collating compounds possessing the potential to inhibit SARS-COV-2 RdRp based on in silico studies to give medicinal chemists food for thought so that the existing drugs can be repurposed for the control and treatment of ongoing COVID-19 pandemic after performing in vitro and in vivo experiments.


Author(s):  
Neetu Agrawal ◽  
Shilpi Pathak ◽  
Ahsas Goyal

: The entire world has been in a battle against the COVID-19 pandemic since its first appearance in December 2019. Thus researchers are desperately working to find an effective and safe therapeutic agent for its treatment. The multifunctional coronavirus enzyme papain-like protease (PLpro) is a potential target for drug discovery to combat the ongoing pandemic responsible for cleavage of the polypeptide, deISGylation, and suppression of host immune response. The present review collates the in silico studies performed on various FDA-approved drugs, chemical compounds, and phytochemicals from various drug databases and represents the compounds possessing the potential to inhibit PLpro. Thus this review can provide quick access to a potential candidate to medicinal chemists to perform in vitro and in vivo experiments who are thriving to find the effective agents for the treatment of COVID-19.


2016 ◽  
Vol 45 (3) ◽  
pp. 747-760 ◽  
Author(s):  
Kyle S. Martin ◽  
Christopher D. Kegelman ◽  
Kelley M. Virgilio ◽  
Julianna A. Passipieri ◽  
George J. Christ ◽  
...  

2019 ◽  
Author(s):  
Maryam Afzali ◽  
Santiago Aja-Fernández ◽  
Derek K Jones

AbstractPurposeIt has been shown previously that for the conventional Stejskal-Tanner pulsed gradient, or linear tensor encoding (LTE), as well as planar tensor encoding (PTE) and in tissue in which diffusion exhibits a ‘stick-like’ geometry, the diffusion-weighted MRI signal at extremely high b-values follows a power-law. Specifically, the signal decays as a in LTE and 1/b in PTE. Here, the direction-averaged signal for arbitrary diffusion encoding waveforms is considered to establish whether power-law behaviors occur with other encoding wave-forms and for other (non-stick-like) diffusion geometries.MethodsWe consider the signal decay for high b-values for encoding geometries ranging from 2-dimensional planar tensor encoding (PTE), through isotropic or spherical tensor encoding (STE) to linear tensor encoding. When a power-law behavior was suggested, this was tested using in-silico simulations and in-vivo using an ultra-strong gradient (300 mT/m) Connectom scanner.ResultsThe results show that using an axisymmetric b-tensor a power-law only exists for two scenarios: For stick-like geometries, (i) the already-discovered LTE case; and (ii) for pure planar encoding. In this latter case, to first order, the signal decays as 1/b. Our in-silico and in-vivo experiments confirm this 1/b relationship.ConclusionA complete analysis of the power-law dependencies of the diffusion-weighted signal at high b-values has been performed. Only two forms of encoding result in a power-law dependency, pure linear and pure planar tensor encoding and when the diffusion geometry is ‘stick-like’. The different exponents of these encodings could be used to provide independent validation of the presence of stick-like geometries in-vivo.


2017 ◽  
Vol 42 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Daniela O. H. Suzuki ◽  
José A. Berkenbrock ◽  
Marisa J. S. Frederico ◽  
Fátima R. M. B. Silva ◽  
Marcelo M. M. Rangel

Sign in / Sign up

Export Citation Format

Share Document