scholarly journals Structural and functional effects of mechanical ventilation and aging on single rat diaphragm muscle fibers

Critical Care ◽  
2015 ◽  
Vol 19 (Suppl 1) ◽  
pp. P250
Author(s):  
N Cacciani ◽  
H Ogilvie ◽  
L Larsson
2014 ◽  
Vol 307 (6) ◽  
pp. L460-L470 ◽  
Author(s):  
Pleuni E. Hooijman ◽  
Marinus A. Paul ◽  
Ger J. M. Stienen ◽  
Albertus Beishuizen ◽  
Hieronymus W. H. Van Hees ◽  
...  

Several studies have indicated that diaphragm dysfunction develops in patients on mechanical ventilation (MV). Here, we tested the hypothesis that the contractility of sarcomeres, i.e., the smallest contractile unit in muscle, is affected in humans on MV. To this end, we compared diaphragm muscle fibers of nine brain-dead organ donors (cases) that had been on MV for 26 ± 5 h with diaphragm muscle fibers from nine patients (controls) undergoing surgery for lung cancer that had been on MV for less than 2 h. In each diaphragm specimen we determined 1) muscle fiber cross-sectional area in cryosections by immunohistochemical methods and 2) the contractile performance of permeabilized single muscle fibers by means of maximum specific force, kinetics of cross-bridge cycling by rate of tension redevelopment, myosin heavy chain content and concentration, and calcium sensitivity of force of slow-twitch and fast-twitch muscle fibers. In case subjects, we noted no statistically significant decrease in outcomes compared with controls in slow-twitch or fast-twitch muscle fibers. These observations indicate that 26 h of MV of humans is not invariably associated with changes in the contractile performance of sarcomeres in the diaphragm.


1999 ◽  
Vol 87 (5) ◽  
pp. 1894-1900 ◽  
Author(s):  
Paige C. Geiger ◽  
Mark J. Cody ◽  
Gary C. Sieck

The present study examined Ca2+ sensitivity of diaphragm muscle (Diam) fibers expressing different myosin heavy chain (MHC) isoforms. We hypothesized that Diam fibers expressing the MHCslow isoform have greater Ca2+ sensitivity than fibers expressing fast MHC isoforms and that this fiber-type difference in Ca2+ sensitivity reflects the isoform composition of the troponin (Tn) complex (TnC, TnT, and TnI). Studies were performed in single Triton-X-permeabilized Diam fibers. The Ca2+ concentration at which 50% maximal force was generated (pCa50) was determined for each fiber. SDS-PAGE and Western analyses were used to determine the MHC and Tn isoform composition of single fibers. The pCa50 for Diam fibers expressing MHCslow was significantly greater than that of fibers expressing fast MHC isoforms, and this greater Ca2+ sensitivity was associated with expression of slow isoforms of the Tn complex. However, some Diam fibers expressing MHCslow contained the fast TnC isoform. These results suggest that the combination of TnT, TnI, and TnC isoforms may determine Ca2+ sensitivity in Diam fibers.


2007 ◽  
Vol 585 (1) ◽  
pp. 203-215 ◽  
Author(s):  
J. M. McClung ◽  
A. N. Kavazis ◽  
M. A. Whidden ◽  
K. C. DeRuisseau ◽  
D. J. Falk ◽  
...  

1997 ◽  
Vol 82 (4) ◽  
pp. 1145-1153 ◽  
Author(s):  
Wen-Zhi Zhan ◽  
Hirofumi Miyata ◽  
Y. S. Prakash ◽  
Gary C. Sieck

Zhan, Wen-Zhi, Hirofumi Miyata, Y. S. Prakash, and Gary C. Sieck. Metabolic and phenotypic adaptations of diaphragm muscle fibers with inactivation. J. Appl. Physiol. 82(4):1145–1153, 1997.—We hypothesized that metabolic adaptations to muscle inactivity are most pronounced when neurotrophic influence is disrupted. In rat diaphragm muscle (Diam), 2 wk of unilateral denervation or tetrodotoxin nerve blockade resulted in a reduction in succinate dehydrogenase (SDH) activity of type I, IIa, and IIx fibers (∼50, 70, and 24%, respectively) and a decrease in SDH variability among fibers (∼63%). In contrast, inactivity induced by spinal cord hemisection at C2 (ST) resulted in much less change in SDH activity of type I and IIa fibers (∼27 and 24%, respectively) and only an ∼30% reduction in SDH variability among fibers. Actomyosin adenosinetriphosphatase (ATPase) activities of type I, IIx, and IIb fibers in denervated and tetrodotoxin-treated Diam were reduced by ∼20, 45, and 60%, respectively, and actomyosin ATPase variability among fibers was ∼60% lower. In contrast, only actomyosin ATPase activity of type IIb fibers was reduced (∼20%) in ST Diam. These results suggest that disruption of neurotrophic influence has a greater impact on muscle fiber metabolic properties than inactivity per se.


2013 ◽  
Vol 28 (suppl 1) ◽  
pp. 13-18 ◽  
Author(s):  
Frances Lilian Lanhellas Gonçalves ◽  
Fábio Santana de Oliveira ◽  
Augusto Frederico Schmidt ◽  
Luís Antônio Violin Dias Pereira ◽  
Rodrigo Melo Gallindo ◽  
...  

PURPOSE: To evaluate the expression of myosin in muscle fibers of the diaphragm in experimental congenital diaphragmatic hernia (CDH). METHODS: Fetuses of pregnant rats were divided into four groups: External Control (EC), composed of non-manipulated rats; Nitrofen, composed of pregnant rats that received 100 mg of nitrofen (2,4-dichloro-4'nitrodiphenyl ether) diluted in olive oil on gestational day (GD) 9.5, whose fetuses developed CDH (N+) or not (N-), and Olive Oil Placebo (OO), composed of pregnant rats that received the oil on the same GD. The fetuses were collected on GD 18.5, 19.5, 20.5 and 21.5 (term = 22 days). We obtained body weight (BW) and photographed the diaphragm area (DA), hernia area (HA) and subsequent calculated the HA/DA ratio in N+ group. Samples of Diaphragm muscle were processed for histological staining with H/E and immunohistochemistry (IHQ) for myosin.} RESULTS: The fetuses of N- and N+ groups had decreased BW and DA compared to EC and OO groups (p <0.001). HA was decreased on GD 18.5 compared to 21.5 (p <0.001) and the HA/DA ratio showed no difference. IHQ showed decreased expression of myosin in nitrofen groups. CONCLUSION: CDH induced by nitrofen model contributes to the understanding of muscularization in the formation of the diaphragm where the myosin expression is decreased.


1997 ◽  
Vol 83 (4) ◽  
pp. 1062-1067 ◽  
Author(s):  
Roland H. H. Van Balkom ◽  
Wen-Zhi Zhan ◽  
Y. S. Prakash ◽  
P. N. Richard Dekhuijzen ◽  
Gary C. Sieck

Van Balkom, Roland H. H., Wen-Zhi Zhan, Y. S. Prakash, P. N. Richard Dekhuijzen, and Gary C. Sieck. Corticosteroid effects on isotonic contractile properties of rat diaphragm muscle. J. Appl. Physiol. 83(4): 1062–1067, 1997.—The effects of corticosteroids (CS) on diaphragm muscle (Diam) fiber morphology and contractile properties were evaluated in three groups of rats: controls (Ctl), surgical sham and weight-matched controls (Sham), and CS-treated (6 mg ⋅ kg−1 ⋅ day−1prednisolone at 2.5 ml/h for 3 wk). In the CS-treated Diam, there was a selective atrophy of type IIx and IIb fibers, compared with a generalized atrophy of all fibers in the Sham group. Maximum isometric force was reduced by 20% in the CS group compared with both Ctl and Sham. Maximum shortening velocity in the CS Diamwas slowed by ∼20% compared with Ctl and Sham. Peak power output of the CS Diam was only 60% of Ctl and 70% of Sham. Endurance to repeated isotonic contractions improved in the CS-treated Diam compared with Ctl. We conclude that the atrophy of type IIx and IIb fibers in the Diam can only partially account for the CS-induced changes in isotonic contractile properties. Other factors such as reduced myofibrillar density or altered cross-bridge cycling kinetics are also likely to contribute to the effects of CS treatment.


2018 ◽  
Vol 243 (17-18) ◽  
pp. 1331-1339 ◽  
Author(s):  
Yung-Yang Liu ◽  
Li-Fu Li

Mechanical ventilation is an essential intervention for intensive care unit patients with acute lung injury. However, the use of controlled mechanical ventilation in both animal and human models causes ventilator-induced diaphragm dysfunction, wherein a substantial reduction in diaphragmatic force-generating capacity occurs, along with structural injury and atrophy of diaphragm muscle fibers. Although diaphragm dysfunction, noted in most mechanically ventilated patients, is correlated with poor clinical outcome, the specific pathophysiology underlying ventilator-induced diaphragm dysfunction requires further elucidation. Numerous factors may underlie this condition in humans as well as animals, such as increased oxidative stress, calcium-activated calpain and caspase-3, the ubiquitin–proteasome system, autophagy–lysosomal pathway, and proapoptotic proteins. All these alter protein synthesis and degradation, thus resulting in muscle atrophy and impaired contractility and compromising oxidative phosphorylation and upregulating glycolysis associated with impaired mitochondrial function. Furthermore, infection combined with mechanical stretch may induce multisystem organ failure and render the diaphragm more sensitive to ventilator-induced diaphragm dysfunction. Herein, several major cellular mechanisms associated with autophagy, apoptosis, and mitochondrial biogenesis—including toll-like receptor 4, nuclear factor-κB, Src, class O of forkhead box, signal transducer and activator of transcription 3, and Janus kinase—are reviewed. In addition, we discuss the potential therapeutic strategies used to ameliorate ventilator-induced diaphragm dysfunction and thus prevent delay in the management of patients under prolonged duration of mechanical ventilation. Impact statement Mechanical ventilation (MV) is life-saving for patients with acute respiratory failure but also causes difficult liberation of patients from ventilator due to rapid decrease of diaphragm muscle endurance and strength, which is termed ventilator-induced diaphragmatic damage (VIDD). Numerous studies have revealed that VIDD could increase extubation failure, ICU stay, ICU mortality, and healthcare expenditures. However, the mechanisms of VIDD, potentially involving a multistep process including muscle atrophy, oxidative loads, structural damage, and muscle fiber remodeling, are not fully elucidated. Further research is necessary to unravel mechanistic framework for understanding the molecular mechanisms underlying VIDD, especially mitochondrial dysfunction and increased mitochondrial oxidative stress, and develop better MV strategies, rehabilitative programs, and pharmacologic agents to translate this knowledge into clinical benefits.


1993 ◽  
Vol 74 (5) ◽  
pp. 2450-2455 ◽  
Author(s):  
L. E. Gosselin ◽  
D. A. Martinez ◽  
A. C. Vailas ◽  
G. C. Sieck

The effect of growth on the relative interstitial space [%total cross-sectional area (CSA)] and collagen content of the rat diaphragm muscle was examined at postnatal ages of 0, 7, 14, and 21 days as well as in adult males. The proportion of interstitial space relative to total muscle CSA was determined by computerized image analysis of lectin-stained cross sections of diaphragm muscle. To assess collagen content and extent of collagen maturation (i.e., cross-linking), high-pressure liquid chromatography analysis was used to measure hydroxyproline concentration and the nonreducible collagen cross-link hydroxylysylpyridinoline (HP), respectively. At birth, interstitial space accounted for approximately 47% of total diaphragm muscle CSA. During postnatal growth, the relative contribution of interstitial space decreased such that by adulthood the interstitial space accounted for approximately 18% of total muscle CSA. The change in relative interstitial space occurred without a concomitant change in hydroxyproline concentration. However, the concentration of HP markedly increased with age such that the adult diaphragm contained approximately 17 times more HP than at birth. These results indicate that during development the relative CSA occupied by interstitial space decreases as muscle fiber size increases. However, the reduction in relative interstitial space is not associated with a change in collagen concentration. Thus collagen density in the interstitial space may increase with age. It is possible that the observed changes in relative interstitial space and collagen influence the passive length-force properties of the diaphragm.


Sign in / Sign up

Export Citation Format

Share Document