scholarly journals Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Rongtao Liu ◽  
Shiyang Zhang ◽  
Chen Zhao ◽  
Dong Yang ◽  
Tingting Cui ◽  
...  

AbstractConductive and degradable nanofibrous scaffolds have great potential in promoting cell growth, proliferation, and differentiation under an external electric field. Although the issue of inferior electrical conductivity in body fluids still exists, polyaniline (PANI)-based degradable nanofibers can promote cell adhesion, growth, and proliferation. To investigate whether the effect is caused by the PANI morphology, we selected three inorganic acids as dopants in the process of PANI in situ oxidative polymerization: hydrochloric acid, sulfuric acid, and perchloric acid. The obtained polyaniline/polylactic acid (PANI/PLA) composite nanofibers were characterized via SEM, FTIR, and XPS analysis, and we confirmed that the PLA nanofibers were successfully coated by PANI without any change to the porous structure of the PLA nanofibers. The in vitro mechanical properties and degradability indicated that the oxidation of acid dopants should be considered and that it was likely to have a higher oxidation degradation effect on PLA nanofibers. The contact angle test demonstrated that PANI/PLA composite nanofibers with different surface morphologies have good wettability, implying that they meet the requirements of bone tissue engineering scaffolds. The surface roughness and cell viability demonstrated that different PANI morphologies on the surface can promote cell proliferation. The higher the surface roughness of the PANI, the better the biocompatibility. Consequently, the regulated surface morphology of PANI/PLA composite nanofibers via different acids doping has positive effect on biocompatibility in tissue engineering.

2012 ◽  
Vol 512-515 ◽  
pp. 1821-1825
Author(s):  
Lin Zhang ◽  
Xue Min Cui ◽  
Qing Feng Zan ◽  
Li Min Dong ◽  
Chen Wang ◽  
...  

A novel microsphere scaffolds composed of chitosan and β-TCP containing vancomycin was designed and prepared. The β-TCP/chitosan composite microspheres were prepared by solid-in-water-in-oil (s/w/o) emulsion cross-linking method with or without pre-cross-linking process. The mode of vancomycin maintaining in the β-TCP/chitosan composite microspheres was detected by Fourier transform infrared spectroscopy (FTIR). The in vitro release curve of vancomycin in simulated body fluid (SBF) was estimated. The results revealed that the pre-cross-linking prepared microspheres possessed higher loading efficiency (LE) and encapsulation efficiency (EE) especially decreasing the previous burst mass of vancomycin in incipient release. These composite microspheres got excellent sphere and well surface roughness in morphology. Vancomycin was encapsulated in composite microspheres through absorption and cross-linking. While in-vitro release curves illustrated that vancomycin release depond on diffusing firstly and then on the degradation ratio later. The microspheres loading with vancomycin would be to restore bone defect, meanwhile to inhibit bacterium proliferation. These bioactive, degradable composite microspheres have potential applications in 3D tissue engineering of bone and other tissues in vitro and in vivo.


2006 ◽  
Vol 7 (6) ◽  
pp. 1751-1757 ◽  
Author(s):  
Forrest A. Landis ◽  
Jean S. Stephens ◽  
James A. Cooper ◽  
Marcus T. Cicerone ◽  
Sheng Lin-Gibson

2004 ◽  
Vol 845 ◽  
Author(s):  
Ai Lin Chun ◽  
Hicham Fenniri ◽  
Thomas J. Webster

ABSTRACTOrganic nanotubes called helical rosette nanotubes (HRN) have been synthesized in this study for bone tissue engineering applications. They possess intriguing properties for various bionanotechnology applications since they can be designed to mimic the nanostructured constituent components in bone such as collagen fibers and hydroxyapatite (Ca5(PO4)3(OH)) which bone cells are naturally accustomed to interacting with. This is in contrast to currently used orthopaedic materials such as titanium which do not possess desirable nanometer surface roughness. The objective of this in vitro study was to determine bone-forming cell (osteoblasts) interactions on titanium coated with HRNs. Results of this study showed for the first time increased osteoblast adhesion on titanium coated with HRNs compared to those not coated with HRNs. In this manner, this study provided evidence that HRNs should be further considered for orthopaedic applications.


2018 ◽  
pp. 461-475 ◽  
Author(s):  
Ozan Karaman

The limitation of orthopedic fractures and large bone defects treatments has brought the focus on fabricating bone grafts that could enhance ostegenesis and vascularization in-vitro. Developing biomimetic materials such as mineralized nanofibers that can provide three-dimensional templates of the natural bone extracellular-matrix is one of the most promising alternative for bone regeneration. Understanding the interactions between the structure of the scaffolds and cells and therefore the control cellular pathways are critical for developing functional bone grafts. In order to enhance bone regeneration, the engineered scaffold needs to mimic the characteristics of composite bone ECM. This chapter reviews the fabrication of and fabrication techniques for fabricating biomimetic bone tissue engineering scaffolds. In addition, the chapter covers design criteria for developing the scaffolds and examples of enhanced osteogenic differentiation outcomes by fabricating biomimetic scaffolds.


2010 ◽  
Vol 19 (2) ◽  
pp. 096369351001900 ◽  
Author(s):  
M. Mozafari ◽  
F. Moztarzadeh ◽  
M. Rabiee ◽  
M. Azami ◽  
N. Nezafati ◽  
...  

In this research, macroporous, mechanically competent and bioactive nanocomposite scaffolds have been fabricated from cross-linked gelatine (Gel) and nano bioactive glass (nBG) through layer solvent casting combined with freeze-drying and lamination techniques. This study has developed a new composition to produce a new bioactive nanocomposite which is porous with interconnected microstructure, pore sizes are 200-500 μm, porosity are 72%-86%. Also, we have reported formation of chemical bonds between nBG and Gel for the first time. Finally, the in vitro cytocompatability of the scaffolds was assessed using MTT assay and cell attachment study. Results indicated no sign of toxicity and cells found to be attached to the pore walls offered by the scaffolds. These results suggested that the developed nanocomposite scaffold possess the prerequisites for bone tissue engineering scaffolds and it can be used for tissue engineering applications.


2016 ◽  
Vol 89 (1) ◽  
pp. 847-853 ◽  
Author(s):  
Zhiyu Liao ◽  
Faris Sinjab ◽  
Amy Nommeots-Nomm ◽  
Julian Jones ◽  
Laura Ruiz-Cantu ◽  
...  

2013 ◽  
Vol 872 ◽  
pp. 257-262 ◽  
Author(s):  
Sergey Ivanovich Tverdokhlebov ◽  
Ksenia Stankevich ◽  
Evgeny N. Bolbasov ◽  
Igor Khlusov ◽  
Irina Kulagina ◽  
...  

The solution blow spinning is presented as a method of obtaining tissue engineering scaffolds. The different forming modes were used and the optimum experimental conditions were found. It is shown that nonwoven polylactide scaffolds with required surface morphology can be obtained. These samples were studied in case of biodegradation in simulation body fluid. It was found that during scaffold dissolution the pH of the solution changes insignificantly (6.85) despite the exponential increase of the monomers of lactic acid. The calcium and phosphorus ion exchange between the scaffold and solution was observed in the surface and bulk of the material what makes possible to use scaffolds for regenerative medicine.


2015 ◽  
Vol 6 (4) ◽  
pp. 1054-1063 ◽  
Author(s):  
Alexander Röder ◽  
Elena García-Gareta ◽  
Christina Theodoropoulos ◽  
Nikola Ristovski ◽  
Keith Blackwood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document