scholarly journals Phenotyping Root Systems in a Set of Japonica Rice Accessions: Can Structural Traits Predict the Response to Drought?

Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Paulo Henrique Ramos Guimarães ◽  
Isabela Pereira de Lima ◽  
Adriano Pereira de Castro ◽  
Anna Cristina Lanna ◽  
Patrícia Guimarães Santos Melo ◽  
...  

Abstract Background The root system plays a major role in plant growth and development and root system architecture is reported to be the main trait related to plant adaptation to drought. However, phenotyping root systems in situ is not suited to high-throughput methods, leading to the development of non-destructive methods for evaluations in more or less controlled root environments. This study used a root phenotyping platform with a panel of 20 japonica rice accessions in order to: (i) assess their genetic diversity for a set of structural and morphological root traits and classify the different types; (ii) analyze the plastic response of their root system to a water deficit at reproductive phase and (iii) explore the ability of the platform for high-throughput phenotyping of root structure and morphology. Results High variability for the studied root traits was found in the reduced set of accessions. Using eight selected traits under irrigated conditions, five root clusters were found that differed in root thickness, branching index and the pattern of fine and thick root distribution along the profile. When water deficit occurred at reproductive phase, some accessions significantly reduced root growth compared to the irrigated treatment, while others stimulated it. It was found that root cluster, as defined under irrigated conditions, could not predict the plastic response of roots under drought. Conclusions This study revealed the possibility of reconstructing the structure of root systems from scanned images. It was thus possible to significantly class root systems according to simple structural traits, opening up the way for using such a platform for medium to high-throughput phenotyping. The study also highlighted the uncoupling between root structures under non-limiting water conditions and their response to drought.

2020 ◽  
Author(s):  
Nicolás Gaggion ◽  
Federico Ariel ◽  
Vladimir Daric ◽  
Éric Lambert ◽  
Simon Legendre ◽  
...  

ABSTRACTDeep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system which combines 3D printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. We developed a novel deep learning based root extraction method which leverages the latest advances in convolutional neural networks for image segmentation, and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. Altogether, our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies as well as the screening of clock-related mutants, revealing novel root traits.


2017 ◽  
Vol 44 (1) ◽  
pp. 76 ◽  
Author(s):  
Tania Gioia ◽  
Anna Galinski ◽  
Henning Lenz ◽  
Carmen Müller ◽  
Jonas Lentz ◽  
...  

New techniques and approaches have been developed for root phenotyping recently; however, rapid and repeatable non-invasive root phenotyping remains challenging. Here, we present GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system (4 plants min–1) based on flat germination paper. GrowScreen-PaGe allows the acquisition of time series of the developing root systems of 500 plants, thereby enabling to quantify short-term variations in root system. The choice of germination paper was found to be crucial and paper ☓ root interaction should be considered when comparing data from different studies on germination paper. The system is suitable for phenotyping dicot and monocot plant species. The potential of the system for high-throughput phenotyping was shown by investigating phenotypic diversity of root traits in a collection of 180 rapeseed accessions and of 52 barley genotypes grown under control and nutrient-starved conditions. Most traits showed a large variation linked to both genotype and treatment. In general, root length traits contributed more than shape and branching related traits in separating the genotypes. Overall, results showed that GrowScreen-PaGe will be a powerful resource to investigate root systems and root plasticity of large sets of plants and to explore the molecular and genetic root traits of various species including for crop improvement programs.


2021 ◽  
Author(s):  
Erica Lombardi ◽  
Juan Pedro Ferrio ◽  
Ulises Rodríguez-Robles ◽  
Víctor Resco de Dios ◽  
Jordi Voltas

Abstract Background and Aim Drought is the main abiotic stress affecting Mediterranean forests. Root systems are responsible for water uptake, but intraspecific variability in tree root morphology is poorly understood mainly owing to sampling difficulties. The aim of this study was to gain knowledge on the adaptive relevance of rooting traits for a widespread pine using a non-invasive, high-throughput phenotyping technique. Methods Ground-Penetrating Radar (GPR) was used to characterize variability in coarse root features (depth, diameter and frequency) among populations of the Mediterranean conifer Pinus halepensis evaluated in a common garden. GPR records were examined in relation to aboveground growth and climate variables at origin of populations. Results Variability was detected for root traits among 56 range-wide populations categorized into 16 ecotypes. Root diameter decreased eastward within the Mediterranean basin. In turn, root frequency, but not depth and diameter, decreased following a northward gradient. Root traits also varied with climatic variables at origin such as the ratio of summer to annual precipitation, summer temperature or solar radiation. Particularly, root frequency increased with aridity, whereas root depth and diameter were maximum for ecotypes occupying the thermal midpoint of the species distribution range. Conclusion GPR is a high-throughput phenotyping tool that allows detection of intraspecific variation in root traits of P. halepensis and its dependencies on eco-geographic characteristics at origin, thereby informing on the adaptive relevance of root systems for the species. It is also potentially suited for inferring population divergence in resource allocation above- and belowground in forest genetic trials.


2016 ◽  
Vol 118 (4) ◽  
pp. 655-665 ◽  
Author(s):  
C. L. Thomas ◽  
N. S. Graham ◽  
R. Hayden ◽  
M. C. Meacham ◽  
K. Neugebauer ◽  
...  

2020 ◽  
Author(s):  
Thierry Balliau ◽  
Harold Duruflé ◽  
Nicolas Blanchet ◽  
Mélisande Blein-Nicolas ◽  
Nicolas B. Langlade ◽  
...  

AbstractThis article describes how the proteomic data were produced on sunflower plants subjected to water deficit. Twenty-four sunflower genotypes were selected to represent genetic diversity within cultivated sunflower. They included both inbred lines and their hybridsWater deficit was applied to plants in pots at the vegetative stage using the high-throughput phenotyping platform Heliaphen. Here, we provide proteomic data from sunflower leaves corresponding to the identification of 3062 proteins and the quantification of 1211 of them in these 24 genotypes grown in two watering conditions. These data differentiate both treatment and the different genotypes and constitute a valuable resource to the community to study adaptation of crops to drought and the molecular basis of heterosis.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Félicien Meunier ◽  
Adrien Heymans ◽  
Xavier Draye ◽  
Valentin Couvreur ◽  
Mathieu Javaux ◽  
...  

Abstract Functional-structural root system models combine functional and structural root traits to represent the growth and development of root systems. In general, they are characterized by a large number of growth, architectural and functional root parameters, generating contrasted root systems evolving in a highly non-linear environment (soil, atmosphere), which makes the link between local traits and functioning unclear. On the other end of the root system modelling continuum, macroscopic root system models associate to each root system a set of plant-scale, easily interpretable parameters. However, as of today, it is unclear how these macroscopic parameters relate to root-scale traits and whether the upscaling of local root traits is compatible with macroscopic parameter measurements. The aim of this study was to bridge the gap between these two modelling approaches. We describe here the MAize Root System Hydraulic Architecture soLver (MARSHAL), a new efficient and user-friendly computational tool that couples a root architecture model (CRootBox) with fast and accurate algorithms of water flow through hydraulic architectures and plant-scale parameter calculations. To illustrate the tool’s potential, we generated contrasted maize hydraulic architectures that we compared with root system architectural and hydraulic observations. Observed variability of these traits was well captured by model ensemble runs. We also analysed the multivariate sensitivity of mature root system conductance, mean depth of uptake, root system volume and convex hull to the input parameters to highlight the key model parameters to vary for virtual breeding. It is available as an R package, an RMarkdown pipeline and a web application.


2020 ◽  
Author(s):  
◽  
Sulaiman Ahmed Ali

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI-COLUMBIA AT REQUEST OF AUTHOR.] Soybean (Glycine max (L.) is currently grown throughout the world because it has been adapted to many environments and because of the high protein and oil content of the seeds. Water scarcity is responsible for the biggest crop losses worldwide and this is expected to worsen; thus, much attention is directed towards the development of drought tolerant crops. The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Crops with deep roots can capture more soil resources, particularly water, to support shoot growth and yield formation. However, the investigation of root systems is difficult and remains challenging, especially under field conditions. Nonetheless, a better understanding of root system form and function is critical to develop strategies to breed for more stress-resilient crops for local production environments. Studies of soybean root systems in general, and rooting depth in particular have been limited. Thus, the aims of the research described in this dissertation were to (i) identify genotypic diversity in rooting depth and distribution of roots in the soil profile and relate these traits to above ground characteristics including yield under rainfed field conditions in a wide range of soybean genotypes, (ii) characterize, compare and contrast root systems of selected soybean genotypes grown under field- and greenhouse-conditions, and (iii) explore the influence of scion and rootstock genotype on root growth of contrasting soybean genotypes under well-watered and water deficit stress conditions. In the first series of experiments, a set of five soybean genotypes that represented contrasting root rooting depths and root elongation rates were selected based on greenhouse experiment and grown under rainfed field conditions. The core break method was used to assess root distributions of these genotypes in two years. The main goals of this experiment were to confirm genotypic variation for key root traits, including rooting depth and distribution, and to determine whether rooting depth is related to seed yield and selected shoot traits. This study confirmed significant variation among genotypes regarding their rooting depth and root distribution in the soil profile. Genotypes with greater maximum rooting depth also exhibited greater numbers of roots in the lower soil strata than shallower rooting genotypes, and rooting depth was positively correlated with seed yield. Confirmation of differences in rooting depth among these genotypes and the relationship with seed yield under field conditions establishes the suitability of the selected genotypes for physiological studies, studies of genetic mechanisms underpinning maximum rooting depth in soybean, and to confirm the potential for yield increase as a result of selection for deep rooting. A second study consisted of two greenhouse experiments to evaluate the effect of water availability on the rooting depth plasticity of deep- and shallow-rooted genotypes. Six contrasting genotypes were grown in PVC pipes under well-watered and dry-down conditions. The soil media was a mixture of soil and sand with a ratio of 4:1, respectively. Significant genotype, water treatment, and genotype by water treatment interaction effects were observed for maximum rooting depth. Maximum rooting depth increased in the dry-down compared to the well-watered treatment and induced a reallocation of root length from shallow strata to deeper regions in the profile for all genotypes. The extent of the difference in rooting depth between well-watered and dry-down treatments, measured as plasticity, was significantly different among genotypes. Thus, plasticity in maximum rooting depth appears to be under genetic control in soybean and may be a suitable target for breeding efforts aimed at increasing yields under drought. In a final study, the influence of scion and rootstock genotype on shoot growth and root system characteristics was examined in deep tubes in an automated rainout shelter. Plants were sown into 1.5- m deep tubes filled with a soil-sand mix (4:1) and grown under well-watered and dry-down conditions. Nine days after sowing, self and reciprocal grafts were made using the wedge grafting method. The dry-down treatment resulted in significantly increased rooting depth for all grafted as well as the non-grafted treatments compared to well-watered treatment. As expected, root length densities in the top 30 cm of the soil were greater for well-watered plants than plants in the dry-down treatment whereas the opposite was true for root length density at depth. Overall, whether self-grafted or serving as rootstock only, the deep-rooted genotype had a stimulatory effect on root growth in most soil strata, particularly under dry-down conditions. In general, limited differences observed among the grafting treatments suggest a small influence of the scion or rootstock genotype on the rooting depth and root distribution in the soil profile. However, grafting studies with additional genotypes should be conducted to explore whether this observation is specific to the genotype combination used in this study or whether it applies more generally for soybean. The experiments described in this dissertation lay the foundation for additional physiological and genetic studies. Further research is needed to ascertain the physiological mechanism behind the responses of contrasting genotypes, and to identify molecular markers and/or genes to facilitate incorporation of desirable root traits into a breeding program to increase yields and/or yield stability under drought conditions.


2016 ◽  
Vol 43 (2) ◽  
pp. 173 ◽  
Author(s):  
Sarah M. Rich ◽  
Anton P. Wasson ◽  
Richard A. Richards ◽  
Trushna Katore ◽  
Renu Prashar ◽  
...  

Many rainfed wheat production systems are reliant on stored soil water for some or all of their water inputs. Selection and breeding for root traits could result in a yield benefit; however, breeding for root traits has traditionally been avoided due to the difficulty of phenotyping mature root systems, limited understanding of root system development and function, and the strong influence of environmental conditions on the phenotype of the mature root system. This paper outlines an international field selection program for beneficial root traits at maturity using soil coring in India and Australia. In the rainfed areas of India, wheat is sown at the end of the monsoon into hot soils with a quickly receding soil water profile; in season water inputs are minimal. We hypothesised that wheat selected and bred for high yield under these conditions would have deep, vigorous root systems, allowing them to access and utilise the stored soil water at depth around anthesis and grain-filling when surface layers were dry. The Indian trials resulted in 49 lines being sent to Australia for phenotyping. These lines were ranked against 41 high yielding Australian lines. Variation was observed for deep root traits e.g. in eastern Australia in 2012, maximum depth ranged from 118.8 to 146.3 cm. There was significant variation for root traits between sites and years, however, several Indian genotypes were identified that consistently ranked highly across sites and years for deep rooting traits.


2017 ◽  
Vol 44 (1) ◽  
pp. 35 ◽  
Author(s):  
Anaëlle Dambreville ◽  
Mélanie Griolet ◽  
Gaëlle Rolland ◽  
Myriam Dauzat ◽  
Alexis Bédiée ◽  
...  

Following the recent development of high-throughput phenotyping platforms for plant research, the number of individual plants grown together in a same experiment has raised, sometimes at the expense of pot size. However, root restriction in excessively small pots affects plant growth and carbon partitioning, and may interact with other stresses targeted in these experiments. In work reported here, we investigated the interactive effects of pot size and soil water deficit on multiple growth-related traits from the cellular to the whole-plant scale in oilseed rape (Brassica napus L.). The effects of pot size on responses to water deficit and allometric relationships revealed strong, multilevel interactions between pot size and watering regime. Notably, water deficit increased the root : shoot ratio in large pots, but not in small pots. At the cellular scale, water deficit decreased epidermal leaf cell area in large pots, but not in small pots. These results were consistent with changes in the level of endoreduplication factor in leaf cells. Our study illustrates the disturbing interaction of pot size with water deficit and raises the need to carefully consider this factor in the frame of the current development of high-throughput phenotyping experiments.


2021 ◽  
Author(s):  
Erica Lombardi ◽  
Juan Pedro Ferrio ◽  
Ulises Rodríguez-Robles ◽  
Víctor Resco de Dios ◽  
Jordi Voltas

Abstract Background and AimDrought is the main factor limiting Mediterranean forest ecosystem productivity. Root systems are responsible for water uptake but intraspecific variability in root morphology is poorly understood, mainly due to sampling complexity. The main aim of this study was to gain knowledge on the adaptive relevance of rooting traits for a widespread conifer using a non-invasive high-throughput technique.MethodsGround-Penetrating Radar (GPR) was used to characterize variability in coarse root features (frequency, depth, and diameter) among populations of the Mediterranean pine Pinus halepensis evaluated in a common garden. GPR records were analysed in relation to aboveground growth and also climate variables at origin of populations.ResultsGenotypic variability was detected for root traits among 56 range-wide populations categorized into 16 ecotypes. Root diameter of populations decreased eastward within the Mediterranean basin. Root frequency, but not depth and diameter, decreased following a northward gradient. Genotypic variation in root traits varied with climatic variables at origin such as summer to annual precipitation ratio, summer temperature and solar radiation. Particularly, root frequency increased with aridity, whereas root depth and diameter were maximum in ecotypes occupying the thermal midpoint of the species distribution range.Conclusion GPR is a high-throughput phenotyping tool that allows detection of intraspecific variation in root traits of Aleppo pine and its dependencies of eco-geographic characteristics at origin, thereby informing on the adaptive relevance of root systems for the species. It is also potentially suited for inferring population divergence in resource allocation above and belowground in forest genetic trials.


Sign in / Sign up

Export Citation Format

Share Document