scholarly journals DNA Area and NETosis Analysis (DANA): a High-Throughput Method to Quantify Neutrophil Extracellular Traps in Fluorescent Microscope Images

2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Ryan Rebernick ◽  
Lauren Fahmy ◽  
Christopher Glover ◽  
Mandar Bawadekar ◽  
Daeun Shim ◽  
...  
Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 191
Author(s):  
Apurwa Singhal ◽  
Shubhi Yadav ◽  
Tulika Chandra ◽  
Shrikant R. Mulay ◽  
Anil Nilkanth Gaikwad ◽  
...  

Neutrophil extracellular traps (NETs) are associated with multiple disease pathologies including sepsis, asthma, rheumatoid arthritis, cancer, systemic lupus erythematosus, acute respiratory distress syndrome, and COVID-19. NETs, being a disintegrated death form, suffered inconsistency in their identification, nomenclature, and quantifications that hindered therapeutic approaches using NETs as a target. Multiple strategies including microscopy, ELISA, immunoblotting, flow cytometry, and image-stream-based methods have exhibited drawbacks such as being subjective, non-specific, error-prone, and not being high throughput, and thus demand the development of innovative and efficient approaches for their analyses. Here, we established an imaging and computational algorithm using high content screening (HCS)—cellomics platform that aid in easy, rapid, and specific detection as well as analyses of NETs. This method employed membrane-permeable and impermeable DNA dyes in situ to identify NET-forming cells. Automated algorithm-driven single-cell analysis of change in nuclear morphology, increase in nuclear area, and change in intensities provided precise detection of NET-forming cells and eliminated user bias with other cell death modalities. Further combination with Annexin V staining in situ detected specific death pathway, e.g., apoptosis, and thus, discriminated between NETs, apoptosis, and necrosis. Our approach does not utilize fixation and permeabilization steps that disturb NETs, and thus, allows the time-dependent monitoring of NETs. Together, this specific imaging-based high throughput method for NETs analyses may provide a good platform for the discovery of potential inhibitors of NET formation and/or agents to modulate neutrophil death, e.g., NETosis-apoptosis switch, as an alternative strategy to enhance the resolution of inflammation.


Author(s):  
E. Wisse ◽  
A. Geerts ◽  
R.B. De Zanger

The slowscan and TV signal of the Philips SEM 505 and the signal of a TV camera attached to a Leitz fluorescent microscope, were digitized by the data acquisition processor of a Masscomp 5520S computer, which is based on a 16.7 MHz 68020 CPU with 10 Mb RAM memory, a graphics processor with two frame buffers for images with 8 bit / 256 grey values, a high definition (HD) monitor (910 × 1150), two hard disks (70 and 663 Mb) and a 60 Mb tape drive. The system is equipped with Imaging Technology video digitizing boards: analog I/O, an ALU, and two memory mapped frame buffers for TV images of the IP 512 series. The Masscomp computer has an ethernet connection to other computers, such as a Vax PDP 11/785, and a Sun 368i with a 327 Mb hard disk and a SCSI interface to an Exabyte 2.3 Gb helical scan tape drive. The operating system for these computers is based on different versions of Unix, such as RTU 4.1 (including NFS) on the acquisition computer, bsd 4.3 for the Vax, and Sun OS 4.0.1 for the Sun (with NFS).


Planta Medica ◽  
2016 ◽  
Vol 82 (05) ◽  
Author(s):  
C Avonto ◽  
AG Chittiboyina ◽  
D Rua ◽  
IA Khan

Sign in / Sign up

Export Citation Format

Share Document