scholarly journals An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome

2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Antonio Ribeiro ◽  
Agnieszka Golicz ◽  
Christine Anne Hackett ◽  
Iain Milne ◽  
Gordon Stephen ◽  
...  
2012 ◽  
Vol 30 (17) ◽  
pp. 2157-2162 ◽  
Author(s):  
Ju-Hyun Park ◽  
Mitchell H. Gail ◽  
Mark H. Greene ◽  
Nilanjan Chatterjee

Purpose To estimate the likely number and predictive strength of cancer-associated single nucleotide polymorphisms (SNPs) that are yet to be discovered for seven common cancers. Methods From the statistical power of published genome-wide association studies, we estimated the number of undetected susceptibility loci and the distribution of effect sizes for all cancers. Assuming a log-normal model for risks and multiplicative relative risks for SNPs, family history (FH), and known risk factors, we estimated the area under the receiver operating characteristic curve (AUC) and the proportion of patients with risks above risk thresholds for screening. From additional prevalence data, we estimated the positive predictive value and the ratio of non–patient cases to patient cases (false-positive ratio) for various risk thresholds. Results Age-specific discriminatory accuracy (AUC) for models including FH and foreseeable SNPs ranged from 0.575 for ovarian cancer to 0.694 for prostate cancer. The proportions of patients in the highest decile of population risk ranged from 16.2% for ovarian cancer to 29.4% for prostate cancer. The corresponding false-positive ratios were 241 for colorectal cancer, 610 for ovarian cancer, and 138 or 280 for breast cancer in women age 50 to 54 or 40 to 44 years, respectively. Conclusion Foreseeable common SNP discoveries may not permit identification of small subsets of patients that contain most cancers. Usefulness of screening could be diminished by many false positives. Additional strong risk factors are needed to improve risk discrimination.


2010 ◽  
Vol 34 (8) ◽  
pp. S75-S75
Author(s):  
Weifeng Zhu ◽  
Zhuoqi Liu ◽  
Daya Luo ◽  
Xinyao Wu ◽  
Fusheng Wan

2007 ◽  
Vol 28 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Rosalind Arden ◽  
Nicole Harlaar ◽  
Robert Plomin

Abstract. An association between intelligence at age 7 and a set of five single-nucleotide polymorphisms (SNPs) has been identified and replicated. We used this composite SNP set to investigate whether the associations differ between boys and girls for general cognitive ability at ages 2, 3, 4, 7, 9, and 10 years. In a longitudinal community sample of British twins aged 2-10 (n > 4,000 individuals), we found that the SNP set is more strongly associated with intelligence in males than in females at ages 7, 9, and 10 and the difference is significant at 10. If this finding replicates in other studies, these results will constitute the first evidence of the same autosomal genes acting differently on intelligence in the two sexes.


Sign in / Sign up

Export Citation Format

Share Document