scholarly journals An effective method to resolve ambiguous bisulfite-treated reads

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mengya Liu ◽  
Yun Xu

Abstract Background The combination of the bisulfite treatment and the next-generation sequencing is an important method for methylation analysis, and aligning the bisulfite-treated reads (BS-reads) is the critical step for the downstream applications. As bisulfite treatment reduces the complexity of the sequences, a large portion of BS-reads might be aligned to multiple locations of the reference genome ambiguously, called multireads. These multireads cannot be employed in the downstream applications since they are likely to introduce artifacts. To identify the best mapping location of each multiread, existing Bayesian-based methods calculate the probability of the read at each position by considering how does it overlap with unique mapped reads. However, $$\sim 25$$ ∼ 25 % of multireads are not overlapped with any unique reads, which are unresolvable for existing method. Results Here we propose a novel method (EM-MUL) that not only rescues multireads overlapped with unique reads, but also uses the overall coverage and accurate base-level alignment to resolve multireads that cannot be handled by current methods. We benchmark our method on both simulated datasets and real datasets. Experimental results show that it is able to align more than 80% of multireads to the best mapping position with very high accuracy. Conclusions EM-MUL is an effective method designed to accurately determine the best mapping position of multireads in BS-reads. For the downstream applications, it is useful to improve the methylation resolution on the repetitive regions of genome. EM-MUL is free available at https://github.com/lmylynn/EM-MUL.

Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 962
Author(s):  
Dario de Biase ◽  
Matteo Fassan ◽  
Umberto Malapelle

Next-Generation Sequencing (NGS) allows for the sequencing of multiple genes at a very high depth of coverage [...]


2021 ◽  
Author(s):  
Jie Wang ◽  
Shiming Li ◽  
Lei Lan ◽  
Mushan Xie ◽  
Shu Cheng ◽  
...  

Abstract Background: Setaria italica is the second-most widely planted species of millets in the world and an important model grain crop for the research of C4 photosynthesis and abiotic stress tolerance. Through three genomes assembly and annotation efforts, all genomes were based on next generation sequencing technology, which limited the genome continuity. Results: Here we report a high-quality whole-genome of new cultivar Huagu11, using single-molecule real-time sequencing and High-throughput chromosome conformation capture (Hi-C) mapping technologies. The total assembly size of the Huagu11 genome was 408.37 Mb with a scaffold N50 size of 45.89 Mb. Compared with the other three reported millet genomes based on the next generation sequencing technology, the Huagu11 genome had the highest genomic continuity. Intraspecies comparison showed about 94.97% and 94.66% of the Yugu1 and Huagu11 genomes, respectively, were able to be aligned as one-to-one blocks with four chromosome inversion. The Huagu11 genome contained approximately 19.43 Mb Presence/absence Variation (PAV) with 627 protein-coding transcripts, while Yugu1 genomes had 20.53 Mb PAV sequences encoding 737 proteins. Overall, 969,596 Single-nucleotide polymorphism (SNPs) and 156,282 insertion-deletion (InDels) were identified between these two genomes. The genome comparison between Huagu11 and Yugu1 should reflect the genetic identity and variation between the cultivars of foxtail millet to a certain extent. The Ser-626-Aln substitution in acetohydroxy acid synthase (AHAS) was found to be relative to the imazethapyr tolerance in Huagu11. Conclusions: A new improved high-quality reference genome sequence of Setaria italica was assembled, and intraspecies genome comparison determined the genetic identity and variation between the cultivars of foxtail millet. Based on the genome sequence, it was found that the Ser-626-Aln substitution in AHAS was responsible for the imazethapyr tolerance in Huagu11. The new improved reference genome of Setaria italica will promote the genic and genomic studies of this species and be beneficial for cultivar improvement.


2015 ◽  
Vol 60 (3) ◽  
pp. 1249-1257 ◽  
Author(s):  
Hajime Kanamori ◽  
Christian M. Parobek ◽  
David J. Weber ◽  
David van Duin ◽  
William A. Rutala ◽  
...  

Next-generation sequencing (NGS) analysis has emerged as a promising molecular epidemiological method for investigating health care-associated outbreaks. Here, we used NGS to investigate a 3-year outbreak of multidrug-resistantAcinetobacter baumannii(MDRAB) at a large academic burn center. A reference genome from the index case was generated usingde novoassembly of PacBio reads. Forty-six MDRAB isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and sequenced using an Illumina platform. After mapping to the index case reference genome, four samples were excluded due to low coverage, leaving 42 samples for further analysis. Multilocus sequence types (MLST) and the presence of acquired resistance genes were also determined from the sequencing data. A transmission network was inferred from genomic and epidemiological data using a Bayesian framework. Based on single-nucleotide variant (SNV) differences, this MDRAB outbreak represented three sequential outbreaks caused by distinct clones. The first and second outbreaks were caused by sequence type 2 (ST2), while the third outbreak was caused by ST79. For the second outbreak, the MLST and PFGE results were discordant. However, NGS-based SNV typing detected a recombination event and consequently enabled a more accurate phylogenetic analysis. The distribution of resistance genes varied among the three outbreaks. The first- and second-outbreak strains possessed ablaOXA-23-likegroup, while the third-outbreak strains harbored ablaOXA-40-likegroup. NGS-based analysis demonstrated the superior resolution of outbreak transmission networks for MDRAB and provided insight into the mechanisms of strain diversification between sequential outbreaks through recombination.


Sign in / Sign up

Export Citation Format

Share Document