scholarly journals The effect of age on DNA methylation in whole blood among Bangladeshi men and women

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rick J. Jansen ◽  
Lin Tong ◽  
Maria Argos ◽  
Farzana Jasmine ◽  
Muhammad Rakibuz-Zaman ◽  
...  

Abstract Background It is well-known that methylation changes occur as humans age, however, understanding how age-related changes in DNA methylation vary by sex is lacking. In this study, we characterize the effect of age on DNA methylation in a sex-specific manner and determine if these effects vary by genomic context. We used the Illumina HumanMethylation 450 K array and DNA derived from whole blood for 400 adult participants (189 males and 211 females) from Bangladesh to identify age-associated CpG sites and regions and characterize the location of these age-associated sites with respect to CpG islands (vs. shore, shelf, or open sea) and gene regions (vs. intergenic). We conducted a genome-wide search for age-associated CpG sites (among 423,604 sites) using a reference-free approach to adjust for cell type composition (the R package RefFreeEWAS) and performed an independent replication analysis of age-associated CpGs. Results The number of age-associated CpGs (p < 5 x 10− 8) were 986 among men and 3479 among women of which 2027(63.8%) and 572 (64.1%) replicated (using Bonferroni adjusted p < 1.2 × 10− 5). For both sexes, age-associated CpG sites were more likely to be hyper-methylated with increasing age (compared to hypo-methylated) and were enriched in CpG islands and promoter regions compared with other locations and all CpGs on the array. Although we observed strong correlation between chronological age and previously-developed epigenetic age models (r ≈ 0.8), among our top (based on lowest p-value) age-associated CpG sites only 12 for males and 44 for females are included in these prediction models, and the median chronological age compared to predicted age was 44 vs. 51.7 in males and 45 vs. 52.1 in females. Conclusions Our results describe genome-wide features of age-related changes in DNA methylation. The observed associations between age and methylation were generally consistent for both sexes, although the associations tended to be stronger among women. Our population may have unique age-related methylation changes that are not captured in the established methylation-based age prediction model we used, which was developed to be non-tissue-specific.

2016 ◽  
Author(s):  
Shyamalika Gopalan ◽  
Oana Carja ◽  
Maud Fagny ◽  
Etienne Patin ◽  
Justin W. Myrick ◽  
...  

AbstractAging is associated with widespread changes in genome-wide patterns of DNA methylation. Thousands of CpG sites whose tissue-specific methylation levels are strongly correlated with chronological age have been previously identified. However, the majority of these studies have focused primarily on cosmopolitan populations living in the developed world; it is not known if age-related patterns of DNA methylation at these loci are similar across a broad range of human genetic and ecological diversity. We investigated genome-wide methylation patterns using saliva and whole blood derived DNA from two traditionally hunting and gathering African populations: the Baka of the western Central African rainforest and the ≠Khomani San of the South African Kalahari Desert. We identify hundreds of CpG sites whose methylation levels are significantly associated with age, thousands that are significant in a meta-analysis, and replicate trends previously reported in populations of non-African descent. We confirm that an age-associated site in the gene ELOVL2 shows a remarkably congruent relationship with aging in humans, despite extensive genetic and environmental variation across populations. We also demonstrate that genotype state at methylation quantitative trait loci (meQTLs) can affect methylation trends at some known age-associated CpG sites. Our study explores the relationship between CpG methylation and chronological age in populations of African hunter-gatherers, who rely on different diets across diverse ecologies. While many age-related CpG sites replicate across populations, we show that considering common genetic variation at meQTLs further improves our ability to detect previously identified age associations.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Yamashita ◽  
Sohachi Nanjo ◽  
Emil Rehnberg ◽  
Naoko Iida ◽  
Hideyuki Takeshima ◽  
...  

Abstract Background Aberrant DNA methylation is induced by aging and chronic inflammation in normal tissues. The induction by inflammation is widely recognized as acceleration of age-related methylation. However, few studies addressed target genomic regions and the responsible factors in a genome-wide manner. Here, we analyzed methylation targets by aging and inflammation, taking advantage of the potent methylation induction in human gastric mucosa by Helicobacter pylori infection-triggered inflammation. Results DNA methylation microarray analysis of 482,421 CpG probes, grouped into 270,249 genomic blocks, revealed that high levels of methylation were induced in 44,461 (16.5%) genomic blocks by inflammation, even after correction of the influence of leukocyte infiltration. A total of 61.8% of the hypermethylation was acceleration of age-related methylation while 21.6% was specific to inflammation. Regions with H3K27me3 were frequently hypermethylated both by aging and inflammation. Basal methylation levels were essential for age-related hypermethylation while even regions with little basal methylation were hypermethylated by inflammation. When limited to promoter CpG islands, being a microRNA gene and high basal methylation levels strongly enhanced hypermethylation while H3K27me3 strongly enhanced inflammation-induced hypermethylation. Inflammation was capable of overriding active transcription. In young gastric mucosae, genes with high expression and frequent mutations in gastric cancers were more frequently methylated than in old ones. Conclusions Methylation by inflammation was not simple acceleration of age-related methylation. Targets of aberrant DNA methylation were different between young and old gastric mucosae, and driver genes were preferentially methylated in young gastric mucosa.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120388 ◽  
Author(s):  
Fu-Hui Xiao ◽  
Yong-Han He ◽  
Qi-Gang Li ◽  
Huan Wu ◽  
Long-Hai Luo ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 653-653 ◽  
Author(s):  
Ying Qu ◽  
Andreas Lennartsson ◽  
Verena I. Gaidzik ◽  
Stefan Deneberg ◽  
Sofia Bengtzén ◽  
...  

Abstract Abstract 653 DNA methylation is involved in multiple biologic processes including normal cell differentiation and tumorigenesis. In AML, methylation patterns have been shown to differ significantly from normal hematopoietic cells. Most studies of DNA methylation in AML have previously focused on CpG islands within the promoter of genes, representing only a very small proportion of the DNA methylome. In this study, we performed genome-wide methylation analysis of 62 AML patients with CN-AML and CD34 positive cells from healthy controls by Illumina HumanMethylation450K Array covering 450.000 CpG sites in CpG islands as well as genomic regions far from CpG islands. Differentially methylated CpG sites (DMS) between CN-AML and normal hematopoietic cells were calculated and the most significant enrichment of DMS was found in regions more than 4kb from CpG Islands, in the so called open sea where hypomethylation was the dominant form of aberrant methylation. In contrast, CpG islands were not enriched for DMS and DMS in CpG islands were dominated by hypermethylation. DMS successively further away from CpG islands in CpG island shores (up to 2kb from CpG Island) and shelves (from 2kb to 4kb from Island) showed increasing degree of hypomethylation in AML cells. Among regions defined by their relation to gene structures, CpG dinucleotide located in theoretic enhancers were found to be the most enriched for DMS (Chi χ2<0.0001) with the majority of DMS showing decreased methylation compared to CD34 normal controls. To address the relation to gene expression, GEP (gene expression profiling) by microarray was carried out on 32 of the CN-AML patients. Totally, 339723 CpG sites covering 18879 genes were addressed on both platforms. CpG methylation in CpG islands showed the most pronounced anti-correlation (spearman ρ =-0.4145) with gene expression level, followed by CpG island shores (mean spearman rho for both sides' shore ρ=-0.2350). As transcription factors (TFs) have shown to be crucial for AML development, we especially studied differential methylation of an unbiased selection of 1638 TFs. The most enriched differential methylation between CN-AML and normal CD34 positive cells were found in TFs known to be involved in hematopoiesis and with Wilms tumor protein-1 (WT1), activator protein 1 (AP-1) and runt-related transcription factor 1 (RUNX1) being the most differentially methylated TFs. The differential methylation in WT 1 and RUNX1 was located in intragenic regions which were confirmed by pyro-sequencing. AML cases were characterized with respect to mutations in FLT3, NPM1, IDH1, IDH2 and DNMT3A. Correlation analysis between genome wide methylation patterns and mutational status showed statistically significant hypomethylation of CpG Island (p<0.0001) and to a lesser extent CpG island shores (p<0.001) and the presence of DNMT3A mutations. This links DNMT3A mutations for the first time to a hypomethylated phenotype. Further analyses correlating methylation patterns to other clinical data such as clinical outcome are ongoing. In conclusion, our study revealed that non-CpG island regions and in particular enhancers are the most aberrantly methylated genomic regions in AML and that WT 1 and RUNX1 are the most differentially methylated TFs. Furthermore, our data suggests a hypomethylated phenotype in DNMT3A mutated AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3736-3736
Author(s):  
Huimin Geng ◽  
Mignon L. Loh ◽  
Richard C. Harvey ◽  
I-Ming Chen ◽  
Meenakshi Devidas ◽  
...  

Abstract Although survival of children with B-cell acute lymphoblastic leukemia (B-ALL) has improved substantially over time, 15% to 20% of patients will relapse, and most of those who experience a bone marrow relapse will die. A better understanding of genetic and epigenetic aberrations in relapsed ALL will facilitate new strategies for risk stratification and targeted therapy. In this collaborative study with the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project, we performed high resolution genome-wide DNA methylation profiling using the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) array on a total of 178 (110 diagnosis, 68 relapse) leukemia samples from 111 patients with childhood B-ALL enrolled on the Children’s Oncology Group (COG) clinical trials who experienced relapsed, and 12 normal preB samples isolated from the bone marrows of 12 healthy individuals. The HELP array covers 117,521 CpG sites, annotated to ∼22,000 gene promoters. For eight diagnosis/relapse pairs, base-pair resolution DNA methylation using the eRRBS (enhanced Reduced Representation Bisulfite Sequencing) method was also performed on Illumina HiSeq2000. The median relapse time for the 111 patients was 21.8 months (range 2.1 to 56.2). Unsupervised clustering analysis using the HELP data revealed seven clusters: one cluster contained only the 12 normal preB samples; four clusters were enriched with MLLr, ETV6/RUNX1, Trisomy 4+10, and TCF3/PBX1 samples, respectively. The sixth cluster was not enriched for specific cytogenetic cases, but interestingly, all cases in this cluster were NCI High Risk (age>10 years or WBC>=50,000; p<0.0001, Fisher’s Exact test) while the seventh cluster has a mixture of other cases. Supervised analysis of HELP profiles between paired relapse/diagnosis samples (n=67) revealed a markedly aberrant DNA methylation signature (1011 probesets, 888 genes, FDR<0.01 and methylation difference dx >25%, paired t-test), with 70% of the genes hyper- and 30% hypo-methylated in relapse samples. Using a Bayesian predictor and leave-one-out cross validation, this methylation signature could predict a sample as diagnosis or relapse with 95.3% accuracy. When comparing early (<36 months; n=50) versus late relapses (>=36 months; n=18), we detected a profound hypermethylation signature in early relapse (96.6% of the 610 probesets, 544 genes, FDR<0.01, dx >25%). Finally, we identified 1800 probesets (1658 genes) as differentially methylated within all cytogenetic subtypes described above compared to the normal preB samples (Dunnett’s test with normal preB as reference, FDR<0.01, dx>25%). Again the majority (70%) of those genes were hypermethylated in relapse as compared to diagnostic and normal preB. The base-pair resolution and more comprehensive eRRBS methylation analysis for the eight pairs of samples identified 39,679 CpG sites as differentially methylated (dx >25%, FDR<0.01), with 78.2% CpG sites hyper- and 21.2% hypo-methylated in relapse samples. Remarkably, the hypermethylated CpGs are primarily in promoter regions (50%, defined as +/-1kb to TSS), followed by intergenic (26%), then intragenic (14%), and exonic (10%) regions. In contrast, the hypomethylated CpGs are mainly in intragenic (48%), followed by intergenic (31%), exonic (14%) and promoter (7%) regions. The hypermethylated CpGs were mainly in CpG islands (86%) or CpG shores (10%), while hypomethylated CpGs were not (CpG islands: 8%, CpG shores: 27%). We further identified 3040 differentially methylated regions (DMRs) with a median size 426 bp. 78.4% of those DMRs were hyper- (1362 gene promoters) and 21.6% hypo-methylated (98 promoters) in relapse compared to diagnostic samples. Gene set enrichment and Ingenuity pathway analysis showed epigenetically disrupted pathways that are highly involved in cell signaling, and embryonic and organismal development. Taken together, our genome-wide high resolution DNA methylation analysis on a large cohort of relapsed childhood B-ALL from the COG trial identified unique methylation signatures that correlated with relapse and with specific genetic subsets. Those methylation signatures featured prevailing promoter hypermethylation and to a lesser extent, intrageneic hypomethylation. Epigenetically dysregulated gene networks in those relapse samples involved cell signaling, and embryonic and organismal development. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 114 (36) ◽  
pp. E7526-E7535 ◽  
Author(s):  
Danuta M. Jeziorska ◽  
Robert J. S. Murray ◽  
Marco De Gobbi ◽  
Ricarda Gaentzsch ◽  
David Garrick ◽  
...  

The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.


AGE ◽  
2014 ◽  
Vol 36 (3) ◽  
Author(s):  
Wilma T. Steegenga ◽  
Mark V. Boekschoten ◽  
Carolien Lute ◽  
Guido J. Hooiveld ◽  
Philip J. de Groot ◽  
...  

2013 ◽  
Vol 41 (3) ◽  
pp. 803-807 ◽  
Author(s):  
Sanne D. van Otterdijk ◽  
John C. Mathers ◽  
Gordon Strathdee

DNA methylation is an important epigenetic mechanism in mammalian cells. It occurs almost exclusively at CpG sites and has a key role in a number of biological processes. It plays an important part in regulating chromatin structure and has been best studied for its role in controlling gene expression. In particular, hypermethylation of gene promoters which have high levels of CpG sites, known as CpG islands, leads to gene inactivation. In healthy cells, however, it appears that only a small number of genes are controlled through promoter hypermethylation, such as genes on the inactivated X-chromosome or at imprinted loci, and most promoter-associated CpG islands remain methylation-free regardless of gene expression status. However, a large body of evidence has now shown that this protection from methylation not only breaks down in a number of pathological conditions (e.g. cancer), but also already occurs during the normal process of aging. The present review focuses on the methylation changes that occur during healthy aging and during disease development, and the potential links between them. We focus especially on the extent to which the acquisition of aberrant methylation changes during aging could underlie the development of a number of important age-related pathological conditions.


Gut ◽  
2017 ◽  
Vol 68 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Melanie Gündert ◽  
Dominic Edelmann ◽  
Axel Benner ◽  
Lina Jansen ◽  
Min Jia ◽  
...  

ObjectivePathological staging used for the prediction of patient survival in colorectal cancer (CRC) provides only limited information.DesignHere, a genome-wide study of DNA methylation was conducted for two cohorts of patients with non-metastatic CRC (screening cohort (n=572) and validation cohort (n=274)). A variable screening for prognostic CpG sites was performed in the screening cohort using marginal testing based on a Cox model and subsequent adjustment of the p-values via independent hypothesis weighting using the methylation difference between 34 pairs of tumour and normal mucosa tissue as auxiliary covariate. From the 1000 CpG sites with the smallest adjusted p-value, 20 CpG sites with the smallest Brier score for overall survival (OS) were selected. Applying principal component analysis, we derived a prognostic methylation-based classifier for patients with non-metastatic CRC (ProMCol classifier).ResultsThis classifier was associated with OS in the screening (HR 0.51, 95% CI 0.41 to 0.63, p=6.2E−10) and the validation cohort (HR 0.61, 95% CI 0.45 to 0.82, p=0.001). The independent validation of the ProMCol classifier revealed a reduction of the prediction error for 3-year OS from 0.127, calculated only with standard clinical variables, to 0.120 combining the clinical variables with the classifier and for 4-year OS from 0.153 to 0.140. All results were confirmed for disease-specific survival.ConclusionThe ProMCol classifier could improve the prognostic accuracy for patients with non-metastatic CRC.


Sign in / Sign up

Export Citation Format

Share Document