scholarly journals Highly diversified core promoters in the human genome and their effects on gene expression and disease predisposition

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Hemant Gupta ◽  
Khyati Chandratre ◽  
Siddharth Sinha ◽  
Teng Huang ◽  
Xiaobing Wu ◽  
...  

Abstract Background Core promoter controls transcription initiation. However, little is known for core promoter diversity in the human genome and its relationship with diseases. We hypothesized that as a functional important component in the genome, the core promoter in the human genome could be under evolutionary selection, as reflected by its highly diversification in order to adjust gene expression for better adaptation to the different environment. Results Applying the “Exome-based Variant Detection in Core-promoters” method, we analyzed human core-promoter diversity by using the 2682 exome data sets of 25 worldwide human populations sequenced by the 1000 Genome Project. Collectively, we identified 31,996 variants in the core promoter region (− 100 to + 100) of 12,509 human genes (https://dbhcpd.fhs.um.edu.mo). Analyzing the rich variation data identified highly ethnic-specific patterns of core promoter variation between different ethnic populations, the genes with highly variable core promoters, the motifs affected by the variants, and their involved functional pathways. eQTL test revealed that 12% of core promoter variants can significantly alter gene expression level. Comparison with GWAS data we located 163 variants as the GWAS identified traits associated with multiple diseases, half of these variants can alter gene expression. Conclusion Data from our study reals the highly diversified nature of core promoter in the human genome, and highlights that core promoter variation could play important roles not only in gene expression regulation but also in disease predisposition.

Author(s):  
Anna Sloutskin ◽  
Hila Shir-Shapira ◽  
Richard N. Freiman ◽  
Tamar Juven-Gershon

The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.


2018 ◽  
Author(s):  
Zhaolian Lu ◽  
Zhenguo Lin

AbstractTranscription initiation is finely regulated to ensure the proper expression and function of these genes. The regulated transcription initiation in response to various environmental cues in the model organism Saccharomyces cerevisiae has not been systematically investigated. In this study, we generated quantitative maps of transcription start site (TSS) at a single-nucleotide resolution for S. cerevisiae grown in nine different conditions using no-amplification non-tagging Cap analysis of gene expression (nAnT-iCAGE) sequencing. Based on 337 million uniquely mapped CAGE tags, we mapped ~1 million well-supported TSSs, suggesting highly pervasive transcription initiation in the compact genome of yeast. The comprehensive TSS maps allowed us to identify core promoters for ~96% verified protein-coding genes and to revise the predicted translation start codon for 183 genes. We found that 56% of yeast genes have at least two core promoters and alternative usage of different core promoters in a gene is widespread in response to changing environments. More importantly, most core promoter shifts are coupled with differential gene expression, indicating that core promoter shift might play an important role in controlling transcriptional activity of yeast genes. Based on their dynamic activities, we divided yeast core promoters as constitutive core promoters (55%) and inducible core promoters (45%). The two classes of core promoters exhibit distinctive patterns in transcriptional abundance, chromatin structure, promoter shape, and sequence context. In summary, the quantitative TSS maps generated by this study improved the annotation of yeast genome, and revealed a highly pervasive and dynamic nature of transcription initiation in yeast.


2016 ◽  
Author(s):  
Jenna E Gallegos ◽  
Alan B Rose

AbstractIn diverse eukaryotes, certain introns increase mRNA accumulation through the poorly understood mechanism of intron-mediated enhancement (IME). A distinguishing feature of IME is that these introns have no effect from upstream or more than 1 Kb downstream of the transcription start site (TSS). To more precisely define the intron position requirements for IME in Arabidopsis, we tested the effect of the UBQ10 intron on gene expression from 6 different positions surrounding the TSS of a TRP1:GUS fusion. The intron strongly increased expression from all transcribed positions, but had no effect when 204 nt or more upstream of the 5’-most TSS. When the intron was located in the 5’ UTR, the TSS unexpectedly changed, resulting in longer transcripts. Remarkably, deleting 303 nt of the core promoter, including all known TSS’s and all but 18 nt of the 5’ UTR, had virtually no effect on the level of gene expression as long as a stimulating intron was included in the gene. When the core promoter was deleted, transcription initiated in normally untranscribed sequences the same distance upstream of the intron as when the promoter was intact. Together, these results suggest that certain introns play unexpectedly large roles in directing transcription initiation and represent a previously unrecognized type of downstream regulatory elements for genes transcribed by RNA polymerase II. This study also demonstrates considerable flexibility in the sequences surrounding the TSS, indicating that the TSS is not determined by promoter sequences alone. These findings are relevant in practical applications where introns are used to increase gene expression and contribute to our general understanding of gene structure and regulation in eukaryotes.


1995 ◽  
Vol 15 (11) ◽  
pp. 5906-5916 ◽  
Author(s):  
K H Emami ◽  
W W Navarre ◽  
S T Smale

The core promoter compositions of mammalian protein-coding genes are highly variable; some contain TATA boxes, some contain initiator (Inr) elements, and others contain both or neither of these basal elements. The underlying reason for this heterogeneity remains a mystery, as recent studies have suggested that TATA-containing and Inr-containing core promoters direct transcription initiation by similar mechanisms and respond similarly to a wide variety of upstream activators. To analyze in greater detail the influence of core promoter structure on transcriptional activation, we compared activation by GAL4-VP16 and Sp1 through synthetic core promoters containing a TATA box, an Inr, or both TATA and Inr. Striking differences were found between the two activators, most notably in the relative strengths of the TATA/Inr and Inr core promoters: the TATA/Inr promoter was much stronger than the Inr promoter when transcription was activated by GAL4-VP16, but the strengths of the two promoters were more comparable when transcription was activated by Sp1. To define the domains of Sp1 responsible for efficient activation through an Inr, several Sp1 deletion mutants were tested as GAL4 fusion proteins. The results reveal that the glutamine-rich activation domains, which previously were found to interact with Drosophila TAF110, preferentially stimulate Inr-containing core promoters. In contrast, efficient activation through TATA appears to require additional domains of Sp1. These results demonstrate that activation domains differ in their abilities to function with specific core promoters, suggesting that the core promoter structure found in a given gene may reflect a preference of the regulators of that gene. Furthermore, the core promoter preference of an activation domain may be related to a specific mechanism of action, which may provide a functional criterion for grouping activation domains into distinct classes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clemens Höflich ◽  
Angela Brieger ◽  
Stefan Zeuzem ◽  
Guido Plotz

AbstractPathogenic genetic variants in the ATP7B gene cause Wilson disease, a recessive disorder of copper metabolism showing a significant variability in clinical phenotype. Promoter mutations have been rarely reported, and controversial data exist on the site of transcription initiation (the core promoter). We quantitatively investigated transcription initiation and found it to be located in immediate proximity of the translational start. The effects human single-nucleotide alterations of conserved bases in the core promoter on transcriptional activity were moderate, explaining why clearly pathogenic mutations within the core promoter have not been reported. Furthermore, the core promoter contains two frequent polymorphisms (rs148013251 and rs2277448) that could contribute to phenotypical variability in Wilson disease patients with incompletely inactivating mutations. However, neither polymorphism significantly modulated ATP7B expression in vitro, nor were copper household parameters in healthy probands affected. In summary, the investigations allowed to determine the biologically relevant site of ATP7B transcription initiation and demonstrated that genetic variations in this site, although being the focus of transcriptional activity, do not contribute significantly to Wilson disease pathogenesis.


2021 ◽  
Author(s):  
René Dreos ◽  
Nati Malachi ◽  
Anna Sloutskin ◽  
Philipp Bucher ◽  
Tamar Juven-Gershon

AbstractMetazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a strict spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.Author summaryTranscription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements have been identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE - containing human promoters have been identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.


2021 ◽  
Author(s):  
Sarah E. Fritz ◽  
Soumya Ranganathan ◽  
J. Robert Hogg

AbstractThe nonsense-mediated mRNA decay (NMD) pathway monitors translation termination to degrade transcripts with premature stop codons and regulate thousands of human genes. Due to the major role of NMD in RNA quality control and gene expression regulation, it is important to understand how the pathway responds to changing cellular conditions. Here we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL, enables condition-dependent remodeling of NMD specificity. UPF1LL associates more stably with potential NMD target mRNAs than the major UPF1SL isoform, expanding the scope of NMD to include many transcripts normally immune to the pathway. Unexpectedly, the enhanced persistence of UPF1LL on mRNAs supports induction of NMD in response to rare translation termination events. Thus, while canonical NMD is abolished by translational repression, UPF1LL activity is enhanced, providing a mechanism to rapidly rewire NMD specificity in response to cellular stress.


2019 ◽  
Author(s):  
Wei Fang ◽  
Yi Wen ◽  
Xiangyun Wei

AbstractTissue-specific or cell type-specific transcription of protein-coding genes is controlled by both trans-regulatory elements (TREs) and cis-regulatory elements (CREs). However, it is challenging to identify TREs and CREs, which are unknown for most genes. Here, we describe a protocol for identifying two types of transcription-activating CREs—core promoters and enhancers—of zebrafish photoreceptor type-specific genes. This protocol is composed of three phases: bioinformatic prediction, experimental validation, and characterization of the CREs. To better illustrate the principles and logic of this protocol, we exemplify it with the discovery of the core promoter and enhancer of the mpp5b apical polarity gene (also known as ponli), whose red, green, and blue (RGB) cone-specific transcription requires its enhancer, a member of the rainbow enhancer family. While exemplified with an RGB cone-specific gene, this protocol is general and can be used to identify the core promoters and enhancers of other protein-coding genes.


2017 ◽  
Author(s):  
Sarah Rennie ◽  
Maria Dalby ◽  
Marta Lloret-Llinares ◽  
Stylianos Bakoulis ◽  
Christian Dalager Vaagensø ◽  
...  

ABSTRACTMammalian gene promoters and enhancers share many properties. They are composed of a unified promoter architecture of divergent transcripton initiation and gene promoters may exhibit enhancer function. However, it is currently unclear how expression strength of a regulatory element relates to its enhancer strength and if the unifying architecture is conserved across Metazoa. Here we investigate the transcription initiation landscape and its associated RNA decay in D. melanogaster. Surprisingly, we find that the majority of active gene-distal enhancers and a considerable fraction of gene promoters are divergently transcribed. We observe quantitative relationships between enhancer potential, expression level and core promoter strength, providing an explanation for indirectly related histone modifications that are reflecting expression levels. Lowly abundant unstable RNAs initiated from weak core promoters are key characteristics of gene-distal developmental enhancers, while the housekeeping enhancer strengths of gene promoters reflect their expression strengths. The different layers of regulation mediated by gene-distal enhancers and gene promoters are also reflected in chromatin interaction data. Our results suggest a unified promoter architecture of many D. melanogaster regulatory elements, that is universal across Metazoa, whose regulatory functions seem to be related to their core promoter elements.


Sign in / Sign up

Export Citation Format

Share Document