developmental gene expression
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 48)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Martin Ringwald ◽  
Joel E. Richardson ◽  
Richard M. Baldarelli ◽  
Judith A. Blake ◽  
James A. Kadin ◽  
...  

AbstractThe Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI’s mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases. MGI maintains mouse anatomy and phenotype ontologies and contributes to the development of the Gene Ontology and Disease Ontology and uses these ontologies as standard terminologies for annotation. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are MGI’s two major knowledgebases. Here, we highlight some of the recent changes and enhancements to MGD and GXD that have been implemented in response to changing needs of the biomedical research community and to improve the efficiency of expert curation. MGI can be accessed freely at http://www.informatics.jax.org.


2021 ◽  
Author(s):  
Alessa R. Ringel ◽  
Quentin Szabo ◽  
Andrea M. Chiariello ◽  
Konrad Chudzik ◽  
Robert Schoepflin ◽  
...  

Cohesin loop extrusion facilitates precise gene expression by continuously driving promoters to sample all enhancers located within the same topologically-associated domain (TAD). However, many TADs contain multiple genes with divergent expression patterns, thereby indicating additional forces further refine how enhancer activities are utilised. Here, we unravel the mechanisms enabling a new gene, Rex1, to emerge with divergent expression within the ancient Fat1 TAD in placental mammals. We show that such divergent expression is not determined by a strict enhancer-promoter compatibility code, intra-TAD position or nuclear envelope-attachment. Instead, TAD-restructuring in embryonic stem cells (ESCs) separates Rex1 and Fat1 with distinct proximal enhancers that independently drive their expression. By contrast, in later embryonic tissues, DNA methylation renders the inactive Rex1 promoter profoundly unresponsive to Fat1 enhancers within the intact TAD. Combined, these features adapted an ancient regulatory landscape during evolution to support two entirely independent Rex1 and Fat1 expression programs. Thus, rather than operating only as rigid blocks of co-regulated genes, TAD-regulatory landscapes can orchestrate complex divergent expression patterns in evolution.


2021 ◽  
Author(s):  
Niels J. Rinzema ◽  
Konstantinos Sofiadis ◽  
Sjoerd J. D. Tjalsma ◽  
Marjon J.A.M. Verstegen ◽  
Yuva Oz ◽  
...  

ABSTRACTDevelopmental gene expression is often controlled by distal tissue-specific enhancers. Enhancer action is restricted to topological chromatin domains, typically formed by cohesin-mediated loop extrusion between CTCF-associated boundaries. To better understand how individual regulatory DNA elements form topological domains and control expression, we used a bottom-up approach, building active regulatory landscapes of different sizes in inactive chromatin. We demonstrate that transcriptional output and protection against gene silencing reduces with increased enhancer distance, but that enhancer contact frequencies alone do not dictate transcription activity. The enhancer recruits cohesin to stimulate the formation of local chromatin contact domains and activate flanking CTCF sites for engagement in chromatin looping. Small contact domains can support strong and stable expression of distant genes. The enhancer requires transcription factors and mediator to activate genes over all distance ranges, but relies on cohesin exclusively for the activation of distant genes. Our work supports a model that assigns two functions to enhancers: its classic role to stimulate transcription initiation and elongation from target gene promoters and a role to recruit cohesin for the creation of contact domains, the engagement of flanking CTCF sites in chromatin looping, and the activation of distal target genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin Franke ◽  
Elisa De la Calle-Mustienes ◽  
Ana Neto ◽  
María Almuedo-Castillo ◽  
Ibai Irastorza-Azcarate ◽  
...  

AbstractCoordinated chromatin interactions between enhancers and promoters are critical for gene regulation. The architectural protein CTCF mediates chromatin looping and is enriched at the boundaries of topologically associating domains (TADs), which are sub-megabase chromatin structures. In vitro CTCF depletion leads to a loss of TADs but has only limited effects over gene expression, challenging the concept that CTCF-mediated chromatin structures are a fundamental requirement for gene regulation. However, how CTCF and a perturbed chromatin structure impacts gene expression during development remains poorly understood. Here we link the loss of CTCF and gene regulation during patterning and organogenesis in a ctcf knockout zebrafish model. CTCF absence leads to loss of chromatin structure and affects the expression of thousands of genes, including many developmental regulators. Our results demonstrate the essential role of CTCF in providing the structural context for enhancer-promoter interactions, thus regulating developmental genes.


Author(s):  
Anna Sloutskin ◽  
Hila Shir-Shapira ◽  
Richard N. Freiman ◽  
Tamar Juven-Gershon

The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.


2021 ◽  
Author(s):  
Paola Cornejo-Paramo ◽  
Kathrein E Roper ◽  
Sandie M Degnan ◽  
Bernard Degnan ◽  
Emily Wong

The chromatin environment plays a central role in regulating developmental gene expression in metazoans. Yet, the basal regulatory landscape of metazoan embryogenesis is unknown. Here, we generate chromatin accessibility profiles for six embryonic, plus larval and adult stages in the sponge Amphimedon queenslandica. These profiles are reproducible within stages, reflect histone modifications, and identify transcription factor (TF) binding sequence motifs predictive of cis-regulatory elements during embryogenesis in other metazoans but not the unicellular relative Capsaspora. Motif analysis of chromatin accessibility profiles across Amphimedon embryogenesis identifies three major developmental periods. As in bilaterian embryogenesis, early development in Amphimedon involves activating and repressive chromatin in regions both proximal and distal to transcription start sites. Transcriptionally repressive elements (silencers) are prominent during late embryogenesis and coincide with an increase in cis-regulatory regions harbouring metazoan TF binding motifs, and an increase in the expression of metazoan-specific genes. Changes in chromatin state and gene expression in Amphimedon suggest the conservation of distal enhancers, dynamically silenced chromatin, and TF-DNA binding specificity in animal embryogenesis.


PLoS Biology ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. e3001377
Author(s):  
Daniil Pokrovsky ◽  
Ignasi Forné ◽  
Tobias Straub ◽  
Axel Imhof ◽  
Ralph A. W. Rupp

Forming an embryo from a zygote poses an apparent conflict for epigenetic regulation. On the one hand, the de novo induction of cell fate identities requires the establishment and subsequent maintenance of epigenetic information to harness developmental gene expression. On the other hand, the embryo depends on cell proliferation, and every round of DNA replication dilutes preexisting histone modifications by incorporation of new unmodified histones into chromatin. Here, we investigated the possible relationship between the propagation of epigenetic information and the developmental cell proliferation during Xenopus embryogenesis. We systemically inhibited cell proliferation during the G1/S transition in gastrula embryos and followed their development until the tadpole stage. Comparing wild-type and cell cycle–arrested embryos, we show that the inhibition of cell proliferation is principally compatible with embryo survival and cellular differentiation. In parallel, we quantified by mass spectrometry the abundance of a large set of histone modification states, which reflects the developmental maturation of the embryonic epigenome. The arrested embryos developed abnormal stage-specific histone modification profiles (HMPs), in which transcriptionally repressive histone marks were overrepresented. Embryos released from the cell cycle block during neurulation reverted toward normality on morphological, molecular, and epigenetic levels. These results suggest that the cell cycle block by HUA alters stage-specific HMPs. We propose that this influence is strong enough to control developmental decisions, specifically in cell populations that switch between resting and proliferating states such as stem cells.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ryuichi Nakajima ◽  
Hideo Hagihara ◽  
Tsuyoshi Miyakawa

Abstract Aim Experimental animals, such as non-human primates (NHPs), mice, Zebrafish, and Drosophila, are frequently employed as models to gain insights into human physiology and pathology. In developmental neuroscience and related research fields, information about the similarities of developmental gene expression patterns between animal models and humans is vital to choose what animal models to employ. Here, we aimed to statistically compare the similarities of developmental changes of gene expression patterns in the brains of humans with those of animal models frequently used in the neuroscience field. Methods The developmental gene expression datasets that we analyzed consist of the fold-changes and P values of gene expression in the brains of animals of various ages compared with those of the youngest postnatal animals available in the dataset. By employing the running Fisher algorithm in a bioinformatics platform, BaseSpace, we assessed similarities between the developmental changes of gene expression patterns in the human (Homo sapiens) hippocampus with those in the dentate gyrus (DG) of the rhesus monkey (Macaca mulatta), the DG of the mouse (Mus musculus), the whole brain of Zebrafish (Danio rerio), and the whole brain of Drosophila (D. melanogaster). Results Among all possible comparisons of different ages and animals in developmental changes in gene expression patterns within the datasets, those between rhesus monkeys and mice were highly similar to those of humans with significant overlap P-value as assessed by the running Fisher algorithm. There was the highest degree of gene expression similarity between 40–59-year-old humans and 6–12-year-old rhesus monkeys (overlap P-value = 2.1 × 10− 72). The gene expression similarity between 20–39-year-old humans and 29-day-old mice was also significant (overlap P = 1.1 × 10− 44). Moreover, there was a similarity in developmental changes of gene expression patterns between 1–2-year-old Zebrafish and 40–59-year-old humans (Overlap P-value = 1.4 × 10− 6). The overlap P-value of developmental gene expression patterns between Drosophila and humans failed to reach significance (30 days Drosophila and 6–11-year-old humans; overlap P-value = 0.0614). Conclusions These results indicate that the developmental gene expression changes in the brains of the rhesus monkey, mouse, and Zebrafish recapitulate, to a certain degree, those in humans. Our findings support the idea that these animal models are a valid tool for investigating the development of the brain in neurophysiological and neuropsychiatric studies.


2021 ◽  
Author(s):  
Zsolt Merenyi ◽  
Mate Viragh ◽  
Emile Gluck-Thaler ◽  
Jason C. Slot ◽  
Brigitta Kiss ◽  
...  

Multicellularity has been one of the most important innovations in the history of life. The role of regulatory evolution in driving transitions to multicellularity is being increasingly recognized; however, patterns and drivers of transcriptome evolution are poorly known in many clades. We here reveal that allele-specific expression, natural antisense transcripts and developmental gene expression, but not RNA editing or a developmental hourglass act in concert to shape the transcriptome of complex multicellular fruiting bodies of fungi. We find that transcriptional patterns of genes are strongly predicted by their evolutionary age. Young genes showed more expression variation both in time and space, possibly because of weaker evolutionary constraint, calling for partially non-adaptive interpretations of evolutionary changes in the transcriptome of multicellular fungi. Gene age also correlated with function, allowing us to separate fruiting body gene expression related to simple sexual development from that potentially underlying complex morphogenesis. Our study highlighted a transcriptional complexity that provides multiple speeds for transcriptome evolution, but also that constraints associated with gene age shape transcriptomic patterns during transitions to complex multicellularity in fungi.


Sign in / Sign up

Export Citation Format

Share Document