scholarly journals Live calcium imaging of Aedes aegypti neuronal tissues reveals differential importance of chemosensory systems for life-history-specific foraging strategies

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Michelle Bui ◽  
Jennifer Shyong ◽  
Eleanor K. Lutz ◽  
Ting Yang ◽  
Ming Li ◽  
...  
2018 ◽  
Author(s):  
Michelle Bui ◽  
Jennifer Shyong ◽  
Eleanor K. Lutz ◽  
Ting Yang ◽  
Ming Li ◽  
...  

AbstractAedes aegypti have a wide variety of sensory pathways that have supported success as a species as well as a highly competent vector of numerous debilitating infectious pathogens. Investigations into mosquito sensory systems and their effects on behavior are valuable resources for the advancement of mosquito control strategies. Numerous studies have elucidated key aspects of mosquito sensory systems, however there remains critical gaps within the field. In particular, compared to that of the adult form, there has been a lack of studies directed towards the immature life stages. Additionally, although numerous studies have pinpointed specific sensory receptors as well as relevant response behaviors, there has been a lack of studies able to monitor both concurrently. To begin filling aforementioned gaps, here we engineered Ae. aegypti to ubiquitously express a genetically encoded calcium indicator, GCaMP6s. Using this strain, combined with advanced confocal microscopy, we were able to simultaneously measure live stimulus-evoked calcium responses in both neuronal and muscle cells with a wide spatial range and resolution. Moreover, by coupling in vivo calcium imaging with behavioral assays we were able to gain functional insights into how stimulus-evoked neural and muscle activities are represented, modulated, and transformed in mosquito larvae enabling us to elucidate mosquito sensorimotor properties important for life-history-specific foraging strategies.Significance StatementUnderstanding mosquito sensory systems and resulting behavior has been a major factor in the advancement of mosquito control innovations. Aedes aegypti larvae offer an effective life stage for further elucidating information on mosquito sensory systems. Due to their relatively simplified nervous system, mosquito larvae are ideal for studying neural signal transduction, coding, and behavior. Moreover, a better understanding of the larval sensory system may enable the development of novel control methodologies able to target mosquitoes before they reach a vector-competent stage. Here we engineer Ae. aegypti to ubiquitously express a genetically encoded calcium indicator, GCaMP6s and use this tool to observe links between sensorimotor responses and behavior by exploiting live calcium imaging as well as live tracking based behavioral assays.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Benjamin J Matthews ◽  
Meg A Younger ◽  
Leslie B Vosshall

Female Aedes aegypti mosquitoes are deadly vectors of arboviral pathogens and breed in containers of freshwater associated with human habitation. Because high salinity is lethal to offspring, correctly evaluating water purity is a crucial parenting decision. We found that the DEG/ENaC channel ppk301 and sensory neurons expressing ppk301 control egg-laying initiation and choice in Ae. aegypti. Using calcium imaging, we found that ppk301-expressing cells show ppk301-dependent responses to water but, unexpectedly, also respond to salt in a ppk301-independent fashion. This suggests that ppk301 is instructive for egg-laying at low-salt concentrations, but that a ppk301-independent pathway is responsible for inhibiting egg-laying at high-salt concentrations. Water is a key resource for insect survival and understanding how mosquitoes interact with water to control different behaviors is an opportunity to study the evolution of chemosensory systems.


2019 ◽  
Vol 286 (1904) ◽  
pp. 20190591 ◽  
Author(s):  
Alima Qureshi ◽  
Andrew Aldersley ◽  
Brian Hollis ◽  
Alongkot Ponlawat ◽  
Lauren J. Cator

Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae . aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.


2012 ◽  
Vol 58 (12) ◽  
pp. 1597-1608 ◽  
Author(s):  
Harish Padmanabha ◽  
Fabio Correa ◽  
Mathieu Legros ◽  
H. Fredrick Nijhout ◽  
Cynthia Lord ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 124
Author(s):  
Keenan Amer ◽  
Karla Saavedra-Rodriguez ◽  
William C. Black ◽  
Emilie M. Gray

The study of fitness costs of insecticide resistance mutations in Aedes aegypti has generally been focused on life history parameters such as fecundity, mortality, and energy reserves. In this study we sought to investigate whether trade-offs might also exist between insecticide resistance and other abiotic stress resistance parameters. We evaluated the effects of the selection for permethrin resistance specifically on larval salinity and thermal tolerance. A population of A. aegypti originally from Southern Mexico was split into two strains, one selected for permethrin resistance and the other not. Larvae were reared at different salinities, and the fourth instar larvae were subjected to acute thermal stress; then, survival to both stresses was compared between strains. Contrary to our predictions, we found that insecticide resistance correlated with significantly enhanced larval thermotolerance. We found no clear difference in salinity tolerance between strains. This result suggests that insecticide resistance does not necessarily carry trade-offs in all traits affecting fitness and that successful insecticide resistance management strategies must account for genetic associations between insecticide resistance and abiotic stress resistance, as well as traditional life history parameters.


2017 ◽  
Vol 220 ◽  
pp. 242-254 ◽  
Author(s):  
Sophie M. Prud'homme ◽  
Arnaud Chaumot ◽  
Eva Cassar ◽  
Jean-Philippe David ◽  
Stéphane Reynaud

Sign in / Sign up

Export Citation Format

Share Document