scholarly journals Genome-wide identification of the Capsicum bHLH transcription factor family: discovery of a candidate regulator involved in the regulation of species-specific bioactive metabolites

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Renjian Liu ◽  
Jiali Song ◽  
Shaoqun Liu ◽  
Changming Chen ◽  
Shuanglin Zhang ◽  
...  

Abstract Background The basic helix–loop–helix (bHLH) transcription factors (TFs) serve crucial roles in regulating plant growth and development and typically participate in biological processes by interacting with other TFs. Capsorubin and capsaicinoids are found only in Capsicum, which has high nutritional and economic value. However, whether bHLH family genes regulate capsorubin and capsaicinoid biosynthesis and participate in these processes by interacting with other TFs remains unknown. Results In this study, a total of 107 CabHLHs were identified from the Capsicum annuum genome. Phylogenetic tree analysis revealed that these CabHLH proteins were classified into 15 groups by comparing the CabHLH proteins with Arabidopsis thaliana bHLH proteins. The analysis showed that the expression profiles of CabHLH009, CabHLH032, CabHLH048, CabHLH095 and CabHLH100 found in clusters C1, C2, and C3 were similar to the profile of carotenoid biosynthesis in pericarp, including zeaxanthin, lutein and capsorubin, whereas the expression profiles of CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 found in clusters L5, L6 and L9 were consistent with the profile of capsaicinoid accumulation in the placenta. Moreover, CabHLH007, CabHLH009, CabHLH026 and CabHLH086 also might be involved in temperature-mediated capsaicinoid biosynthesis. Yeast two-hybrid (Y2H) assays demonstrated that CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 could interact with MYB31, a master regulator of capsaicinoid biosynthesis. Conclusions The comprehensive and systematic analysis of CabHLH TFs provides useful information that contributes to further investigation of CabHLHs in carotenoid and capsaicinoid biosynthesis.

2020 ◽  
Author(s):  
Renjian Liu ◽  
Jiali Song ◽  
Shaoqun Liu ◽  
Changming Chen ◽  
Shuanglin Zhang ◽  
...  

Abstract Background: The basic helix–loop–helix (bHLH) transcription factors (TFs) serve crucial roles in the regulation of plant growth and development and usually participate in biological processes by interacting with other TFs. Capsorubin and capsaicinoids are found only in Capsicum, which has high nutritional and economic value. However, whether bHLH family genes regulate capsorubin and capsaicinoid biosynthesis and participate in these processes by interacting with other TFs remains to be determined.Results: In this study, a total of 107 CabHLHs were identified from the Capsicum annuum genome. Phylogenetic tree analysis revealed that these CabHLH proteins were classified into 15 groups by comparing the CabHLH proteins with Arabidopsis bHLH proteins. A transcriptome analysis showed that some CabHLHs might be associated with the regulation of capsorubin and capsaicinoid biosynthesis, and the CabHLHs were focused mainly in cluster C1, cluster C2, cluster C3, cluster C4, cluster L5, cluster L6, cluster L8 and cluster L9. In cluster C1, cluster C2, and cluster C3, the expression profiles of CabHLH009, CabHLH032, CabHLH048, CabHLH095 and CabHLH100 were similar to the pattern of carotenoid biosynthesis in pericarp, including β-carotene, zeaxanthin, lutein and capsorubin, while the expression profiles of CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 found in cluster L5, cluster L6 and cluster L9 were consistent with the pattern of capsaicin accumulation in the placenta. CabHLH007, CabHLH009, CabHLH026 and CabHLH086 also might be involved in temperature-mediated capsaicinoid biosynthesis. Additionally, yeast two-hybrid (Y2H) assays demonstrated that CabHLH007, CabHLH009, CabHLH026, CabHLH063 and CabHLH086 could interact with MYB31, a master regulator for capsaicinoid biosynthesis.Conclusions: The comprehensive and systematic analysis of CabHLH TFs provides significantly useful information that contributes to further investigation of CabHLHs in carotenoid and capsaicinoid biosynthesis.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 914
Author(s):  
Shan ◽  
Zhang ◽  
Yu ◽  
Wang ◽  
Li ◽  
...  

Basic helix–loop–helix (bHLH) transcription factor (TF) family is commonly found in eukaryotes, which is one of the largest families of regulator proteins. It plays an important role in plant growth and development, as well as various biotic and abiotic stresses. However, a comprehensive analysis of the bHLH family has not been reported in Brassica oleracea. In this study, we systematically describe the BobHLHs in the phylogenetic relationships, expression patterns in different organs/tissues, and in response to chilling stress, and gene and protein characteristics. A total of 234 BobHLH genes were identified in the B. oleracea genome and were further clustered into twenty-three subfamilies based on the phylogenetic analyses. A large number of BobHLH genes were unevenly located on nine chromosomes of B. oleracea. Analysis of RNA-Seq expression profiles revealed that 21 BobHLH genes exhibited organ/tissue-specific expression. Additionally, the expression of six BobHLHs (BobHLH003, -048, -059, -093, -109, and -148) were significantly down-regulated in chilling-sensitive cabbage (CS-D9) and chilling-tolerant cabbage (CT-923). At 24h chilling stress, BobHLH054 was significantly down-regulated and up-regulated in chilling-treated CS-D9 and CT-923. Conserved motif characterization and exon/intron structural patterns showed that BobHLH genes had similar structures in the same subfamily. This study provides a comprehensive analysis of BobHLH genes and reveals several candidate genes involved in chilling tolerance of B. oleracea, which may be helpful to clarify the roles of bHLH family members and understand the regulatory mechanisms of BobHLH genes in response to the chilling stress of cabbage.


2020 ◽  
Author(s):  
Songfeng Diao ◽  
Hong Liu ◽  
Zhongrui Lv ◽  
Caiyun He ◽  
Aiguo Duan ◽  
...  

Abstract Background The basic helix-loop-helix (bHLH) transcription factor gene family is one of the largest gene families and extensively involved in plant growth, organ development, and stress responses. However, limited studies are available on the gene family in sea buckthorn. Results In this study, we focused on 144 HrbHLH genes, exploring their DNA and protein sequences and physicochemical properties. According to their protein sequence similarities, we classified the genes into 15 groups with specific motif structures. In order to explore their expressions, we performed gene expression profiling using RNA-Seq and identified 108 HrbHLH genes that expressed in five sea buckthorn tissue, including root nodule, root, leaf, stem and fruit. Furthermore, we found 11 increased expressed HrbHLH genes during sea buckthorn fruit development. We validated the expression pattern of HrbHLH genes using reverse transcription quantitative real-time PCR. Conclusions This study lays the foundation for future studies on gene cloning, transgenes, and biological mechanisms. We performed a genome-wide, systematic analysis of bHLH proteins in sea buckthorn. This comprehensive analysis provides a useful resource that enables further investigation of the physiological roles and molecular functions of the HrbHLH TFs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Renjian Liu ◽  
Yuyuan Wang ◽  
Song Tang ◽  
Jiarong Cai ◽  
Shaoqun Liu ◽  
...  

AbstractLeaf trichomes play vital roles in plant resistance and the quality of tea. Basic helix-loop-helix (bHLH) transcription factors (TFs) play an important role in regulating plant development and growth. In this study, a total of 134 CsbHLH proteins were identified in the Camellia sinensis var. sinensis (CSS) genome. They were divided into 17 subgroups according to the Arabidopsis thaliana classification. Phylogenetic tree analysis indicated that members of subgroups IIIc-I and IIIc-II might be associated with trichome formation. The expression patterns of CsbHLH116, CsbHLH133, CsbHLH060, CsbHLH028, CsbHLH024, CsbHLH112 and CsbHLH053 from clusters 1, 3 and 5 were similar to the trichome distribution in tea plants. CsbHLH024 and CsbHLH133 were located in the cell nucleus and possessed transcriptional activation ability. They could interact with CsTTG1, which is a regulator of tea trichome formation. This study provides useful information for further research on the function of CsbHLHs in trichome formation.


2021 ◽  
Author(s):  
Renjian Liu ◽  
Yuyuan Wang ◽  
Song Tang ◽  
Jiarong Cai ◽  
Shaoqun Liu ◽  
...  

Abstract Leaf trichomes play vital roles in plant resistance and tea quality. Basic helix-loop-helix (bHLH) transcription factors (TFs) play an important role in regulating plant development and growth. However, it is poorly understood whether bHLH TFs are associated with trichome formation in tea plant. In this study, a total of 134 CsbHLH proteins were identified in the Camellia sinensis var. sinensis (CSS) genome. All identified proteins were divided into 19 subgroups according to the Arabidopsis thaliana classification. Phylogenetic tree analysis indicated that the members of group IIIc-I and group IIIc-II might be associated with trichome formation. Expression analysis showed that the candidate genes associated with trichome formation in tea plant were primarily located in cluster 1, cluster 3 and cluster 5. The expression patterns of CsbHLH116, CsbHLH133, CsbHLH060, CsbHLH028, CsbHLH024, CsbHLH112 and CsbHLH053 from these clusters were similar to the trichome distribution in tea plants. Notably, CsbHLH024 and CsbHLH133 were highly expressed in the young tissues of different cultivars. CsbHLH024 and CsbHLH133 possessed transcriptional activation ability and could interact with CsTTG1, a regulator of tea trichome formation. This study provides useful information for further research on the function of CsbHLHs in the regulation of trichome formation.


2018 ◽  
Vol 3 ◽  
pp. 125 ◽  
Author(s):  
Laura J.A. Hardwick ◽  
Anna Philpott

The proneural basic-helix-loop-helix (bHLH) transcription factor Ascl1 is a master regulator of neurogenesis in both central and peripheral nervous systems in vivo, and is a central driver of neuronal reprogramming in vitro. Over the last three decades, assaying primary neuron formation in Xenopus embryos in response to transcription factor overexpression has contributed to our understanding of the roles and regulation of proneural proteins like Ascl1, with homologues from different species usually exhibiting similar functional effects. Here we demonstrate that the mouse Ascl1 protein is twice as active as the Xenopus protein in inducing neural-β-tubulin expression in Xenopus embryos, despite there being little difference in protein accumulation or ability to undergo phosphorylation, two properties known to influence Ascl1 function. This superior activity of the mouse compared to the Xenopus protein is dependent on the presence of the non-conserved N terminal region of the protein, and indicates species-specific regulation that may necessitate care when interpreting results in cross-species experiments.


2020 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background Iron (Fe) deficiency is a common problem in citrus production. As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins have been shown to participate in the regulation of Fe homeostasis and a series of other biological and developmental processes in plants. However, this family of members in citrus and their functions in citrus Fe deficiency are still largely unknown. Results In this study, we identified a total of 128 CgbHLHs from pummelo ( Citrus grandis ) genome that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 27 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, several of CgbHLHs were identified as the key candidates that respond to iron deficiency. Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2019 ◽  
Author(s):  
Xiao-Yong Zhang ◽  
Jie-Ya Qiu ◽  
Qiu-Ling Hui ◽  
Yuan-Yuan Xu ◽  
Yi-Zhong He ◽  
...  

Abstract Background As the second largest superfamily of transcription factors (TFs), the basic/helix-loop-helix (bHLH) proteins participate in regulating of a series of biological and developmental processes in plants. Although several bHLH genes of citrus have been identified and previously characterized, a large number of bHLH members are still unknown.Results In this study, we genome-widely identified a total of 128 CgbHLHs from pummelo (Citrus grandis) that were classified into 18 subfamilies by phylogenetic comparison with Arabidopsis thaliana bHLH proteins. All of these CgbHLHs were randomly distributed on nine known (125 genes) and one unknown (3 genes) chromosomes, and 12 and 47 of them were identified to be tandem and segmental duplicated genes, respectively. Sequence analysis showed detailed characteristics of their intron-exon structures, bHLH domain and conserved motifs. Gene ontology (GO) analysis suggested that most of CgbHLHs were annotated to the nucleus, DNA-binding transcription factor activity, response to abiotic stimulus, reproduction, post-embryonic development, flower development and photosynthesis. In addition, 37 CgbHLH proteins were predicted to have direct or indirect protein-protein interactions. Based on GO annotation, RNA sequencing data in public database and qRT-PCR results, 22 of CgbHLHs were identified as the key candidates that respond to iron deficiency.Conclusions In total, 128 CgbHLH proteins were identified from pummelo, and their detailed sequence and structure characteristics and putative functions were analyzed. This study provides comprehensive information for further functional elucidation of CgbHLH genes in citrus.


2020 ◽  
Author(s):  
Yunzhuo Ke ◽  
Yunwen Wu ◽  
Hongjun Zhou ◽  
Ping Chen ◽  
Mangmang Wang ◽  
...  

Abstract Background: The basic helix-loop-helix (bHLH) gene family is one of the largest transcription factor families in plants and is functionally characterized in diverse species. However, less is known about its functions in the economically important allopolyploid oil crop, Brassica napus . Results : We identified 602 potential bHLHs in the B. napus genome ( BnabHLHs ) and categorized them into 35 subfamilies, including seven newly separated subfamilies, based on phylogeny, protein structure, and exon-intron organization analysis. The intron insertion patterns of this gene family were analyzed and a total of eight types were identified in the bHLH regions of BnabHLHs . Chromosome distribution and synteny analyses revealed that hybridization between Brassica rapa and Brassica oleracea was the main expansion mechanism for BnabHLHs . Expression analyses showed that BnabHLHs were widely in different plant tissues and formed seven main patterns, suggesting they may participate in various aspects of B. napus development. Furthermore, when roots were treated with five different hormones (IAA, auxin; GA 3 , gibberellin; 6-BA, cytokinin; ABA, abscisic acid and ACC, ethylene), the expression profiles of BnabHLHs changed significantly, with many showing increased expression. The induction of five candidate BnabHLHs was confirmed following the five hormone treatments via qRT-PCR. Up to 246 BnabHLHs from nine subfamilies were predicted to have potential roles relating to root development through the joint analysis of their expression profiles and homolog function. Conclusion: The 602 BnabHLHs identified from B. napus were classified into 35 subfamilies, and those members from the same subfamily generally had similar sequence motifs. Overall, we found that BnabHLHs may be widely involved in root development in B. napus . Moreover, this study provides important insights into the potential functions of the BnabHLHs super gene family and thus will be useful in future gene function research. Keywords: Brassica napus ; bHLH transcription factor; root; gene expression


Sign in / Sign up

Export Citation Format

Share Document