scholarly journals Genome-wide association study of individual sugar content in fruit of Japanese pear (Pyrus spp.)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sogo Nishio ◽  
Takeshi Hayashi ◽  
Kenta Shirasawa ◽  
Toshihiro Saito ◽  
Shingo Terakami ◽  
...  

Abstract Background Understanding mechanisms of sugar accumulation and composition is essential to determining fruit quality and maintaining a desirable balance of sugars in plant storage organs. The major sugars in mature Rosaceae fruits are sucrose, fructose, glucose, and sorbitol. Among these, sucrose and fructose have high sweetness, whereas glucose and sorbitol have low sweetness. Japanese pear has extensive variation in individual sugar contents in mature fruit. Increasing total sugar content and that of individual high-sweetness sugars is a major target of breeding programs. The objective of this study was to identify quantitative trait loci (QTLs) associated with fruit traits including individual sugar accumulation, to infer the candidate genes underlying the QTLs, and to assess the potential of genomic selection for breeding pear fruit traits. Results We evaluated 10 fruit traits and conducted genome-wide association studies (GWAS) for 106 cultivars and 17 breeding populations (1112 F1 individuals) using 3484 tag single-nucleotide polymorphisms (SNPs). By implementing a mixed linear model and a Bayesian multiple-QTL model in GWAS, 56 SNPs associated with fruit traits were identified. In particular, a SNP located close to acid invertase gene PPAIV3 on chromosome 7 and a newly identified SNP on chromosome 11 had quite large effects on accumulation of sucrose and glucose, respectively. We used ‘Golden Delicious’ doubled haploid 13 (GDDH13), an apple reference genome, to infer the candidate genes for the identified SNPs. In the region flanking the SNP on chromosome 11, there is a tandem repeat of early responsive to dehydration (ERD6)-like sugar transporter genes that might play a role in the phenotypes observed. Conclusions SNPs associated with individual sugar accumulation were newly identified at several loci, and candidate genes underlying QTLs were inferred using advanced apple genome information. The candidate genes for the QTLs are conserved across Pyrinae genomes, which will be useful for further fruit quality studies in Rosaceae. The accuracies of genomic selection for sucrose, fructose, and glucose with genomic best linear unbiased prediction (GBLUP) were relatively high (0.67–0.75), suggesting that it would be possible to select individuals having high-sweetness fruit with high sucrose and fructose contents and low glucose content.

2021 ◽  
Author(s):  
Sogo Nishio ◽  
Takeshi Hayashi ◽  
Kenta Shirasawa ◽  
Toshihiro Saito ◽  
Shingo Terakami ◽  
...  

Abstract Background: Sweetness is one of the most important traits determining fruit quality. Sweetness is controlled not only by the total sugar content but also by the contents of individual sugars. The major sugars in mature Rosaceae fruits are sucrose, fructose, glucose, and sorbitol, which have different levels of sweetness. Among these, sucrose and fructose have high sweetness, whereas glucose and sorbitol have low sweetness. The objective of this study was to identify the quantitative trait loci (QTLs) associated with fruit traits including individual sugar accumulation and conversion, to infer the candidate genes underlying the QTLs, and to assess the potential of genomic selection for breeding pear fruit traits.Results: We evaluated 10 fruit traits and conducted genome-wide association studies (GWAS) for 106 cultivars and 17 breeding populations (1112 F1 individuals) using 3484 tag single-nucleotide polymorphisms (SNPs) genotyped by double-digest restriction-site associated DNA sequencing (ddRAD-Seq). By implementing a mixed linear model and a Bayesian multiple-QTL model in GWAS, 56 SNPs associated with fruit traits were identified. Four loci were presumed to be associated with sugar conversion because the SNPs were significant for more than one individual sugar and the individual sugar contents associated with each SNP genotype were negatively correlated. In particular, a SNP located close to acid invertase gene PPAIV3 on chromosome 7 and a newly identified SNP on chromosome 11 had quite large effects on sugar conversion. We used ‘Golden Delicious’ doubled haploid (GDDH) 13, an apple reference genome to infer the candidate genes for the identified SNPs. In the region flanking the SNP on chromosome 11, there is a tandem repeat of early responsive to dehydration (ERD6)-like sugar transporter genes which might play a role in the phenotypes observed.Conclusions: SNPs associated with sugar accumulation and conversion were newly identified at several loci, and candidate genes underlying QTLs were inferred using advanced apple genome information. Several QTLs showed clear effects with more than 10% of phenotypic variance explained by those SNPs in the breeding populations. By combining the effects of multiple QTLs, breeders would be able to select seedlings that will later bear fruit with high sucrose and fructose content.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pasquale Tripodi ◽  
Salvador Soler ◽  
Gabriele Campanelli ◽  
María José Díez ◽  
Salvatore Esposito ◽  
...  

Abstract Background Opportunity and challenges of the agriculture scenario of the next decades will face increasing demand for secure food through approaches able to minimize the input to cultivations. Large panels of tomato varieties represent a valuable resource of traits of interest under sustainable cultivation systems and for genome-wide association studies (GWAS). For mapping loci controlling the variation of agronomic, fruit quality, and root architecture traits, we used a heterogeneous set of 244 traditional and improved tomato accessions grown under organic field trials. Here we report comprehensive phenotyping and GWAS using over 37,300 SNPs obtained through double digest restriction-site associated DNA (dd-RADseq). Results A wide range of phenotypic diversity was observed in the studied collection, with highly significant differences encountered for most traits. A variable level of heritability was observed with values up to 69% for morphological traits while, among agronomic ones, fruit weight showed values above 80%. Genotype by environment analysis highlighted the strongest genotypic effect for aboveground traits compared to root architecture, suggesting that the hypogeal part of tomato plants has been a minor objective for breeding activities. GWAS was performed by a compressed mixed linear model leading to 59 significantly associated loci, allowing the identification of novel genes related to flower and fruit characteristics. Most genomic associations fell into the region surrounding SUN, OVATE, and MYB gene families. Six flower and fruit traits were associated with a single member of the SUN family (SLSUN31) on chromosome 11, in a region involved in the increase of fruit weight, locules number, and fruit fasciation. Furthermore, additional candidate genes for soluble solids content, fruit colour and shape were found near previously reported chromosomal regions, indicating the presence of synergic and multiple linked genes underlying the variation of these traits. Conclusions Results of this study give new hints on the genetic basis of traits in underexplored germplasm grown under organic conditions, providing a framework for the development of markers linked to candidate genes of interest to be used in genomics-assisted breeding in tomato, in particular under low-input and organic cultivation conditions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming-Yue Zhang ◽  
Cheng Xue ◽  
Hongju Hu ◽  
Jiaming Li ◽  
Yongsong Xue ◽  
...  

AbstractPear is a major fruit tree crop distributed worldwide, yet its breeding is a very time-consuming process. To facilitate molecular breeding and gene identification, here we have performed genome-wide association studies (GWAS) on eleven fruit traits. We identify 37 loci associated with eight fruit quality traits and five loci associated with three fruit phenological traits. Scans for selective sweeps indicate that traits including fruit stone cell content, organic acid and sugar contents might have been under continuous selection during breeding improvement. One candidate gene, PbrSTONE, identified in GWAS, has been functionally verified to be involved in the regulation of stone cell formation, one of the most important fruit quality traits in pear. Our study provides insights into the complex fruit related biology and identifies genes controlling important traits in pear through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in perennial trees.


2019 ◽  
Author(s):  
Waltram Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Fengmin Wang ◽  
Yan Feng ◽  
...  

Abstract Background Soybean [ Glycine max (L.) Merr.] is a legume of great interest worldwide. Enhancing genetic gain for agronomic traits via molecular approaches has been long considered as the main task for soybean breeders and geneticists. The objectives of this study were to evaluate maturity, plant height, seed weight, and yield in a diverse soybean accession panel, to conduct a genome-wide association study (GWAS) for these traits and identify SNP markers associated with the four traits, and to assess genomic selection (GS) accuracy. Results A total of 250 soybean accessions were evaluated for maturity, plant height, seed weight, and yield over three years. This panel was genotyped with a total of 10,259 high quality SNPs postulated from genotyping by sequencing (GBS). GWAS was performed using a Bayesian Information and Linkage Disequilibrium Iteratively Nested Keyway (BLINK) model, and GS was evaluated using a ridge regression best linear unbiased predictor (rrBLUP) model. The results revealed that a total of 20, 31, 37, 31, and 23 SNPs were significantly associated with the average 3-year data for maturity, plant height, seed weight, and yield, respectively; some significant SNPs were mapped into previously described loci ( E2 , E4 , and Dt1 ) affecting maturity and plant height in soybean and a new locus mapped on chromosome 20 was significantly associated with plant height; Glyma.10g228900 , Glyma.19g200800 , Glyma.09g196700 , and Glyma.09g038300 were candidate genes found in the vicinity of the top or the second best SNP for maturity, plant height, seed weight, and yield, respectively; a 11.5-Mb region of chromosome 10 was associated with both seed weight and yield; and GS accuracy was trait-, year-, and population structure-dependent. Conclusions The SNP markers identified from this study for plant height, maturity, seed weight and yield can be used to improve the four agronomic traits through marker-assisted selection (MAS) and GS in soybean breeding programs. After validation, the candidate genes can be transferred to new cultivars using SNP markers through MAS. The high GS accuracy has confirmed that the four agronomic traits can be selected in molecular breeding through GS.


2018 ◽  
Vol 8 (4) ◽  
pp. 1195-1203 ◽  
Author(s):  
Diego Robledo ◽  
Oswald Matika ◽  
Alastair Hamilton ◽  
Ross D. Houston

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169234 ◽  
Author(s):  
Elisa Biazzi ◽  
Nelson Nazzicari ◽  
Luciano Pecetti ◽  
E. Charles Brummer ◽  
Alberto Palmonari ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0235089
Author(s):  
Waltram Second Ravelombola ◽  
Jun Qin ◽  
Ainong Shi ◽  
Liana Nice ◽  
Yong Bao ◽  
...  

Aquaculture ◽  
2021 ◽  
Vol 533 ◽  
pp. 736214
Author(s):  
Xinxin Shan ◽  
Tengfei Xu ◽  
Zhiyuan Ma ◽  
Xinhui Zhang ◽  
Zhiqiang Ruan ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Anthony Bernard ◽  
Julie Crabier ◽  
Armel S. L. Donkpegan ◽  
Annarita Marrano ◽  
Fabrice Lheureux ◽  
...  

Elucidating the genetic determinants of fruit quality traits in walnut is essential to breed new cultivars meeting the producers and consumers’ needs. We conducted a genome-wide association study (GWAS) using multi-locus models in a panel of 170 accessions of Juglans regia from the INRAE walnut germplasm collection, previously genotyped using the AxiomTMJ. regia 700K SNP array. We phenotyped the panel for 25 fruit traits related to morphometrics, shape, volume, weight, ease of cracking, and nutritional composition. We found more than 60 marker-trait associations (MTAs), including a highly significant SNP associated with nut face diameter, nut volume and kernel volume on chromosome 14, and 5 additional associations were detected for walnut weight. We proposed several candidate genes involved in nut characteristics, such as a gene coding for a beta-galactosidase linked to several size-related traits and known to be involved in fruit development in other species. We also confirmed associations on chromosomes 5 and 11 with nut suture strength, recently reported by the University of California, Davis. Our results enhance knowledge of the genetic control of important agronomic traits related to fruit quality in walnut, and pave the way for the development of molecular markers for future assisted selection.


Sign in / Sign up

Export Citation Format

Share Document