scholarly journals A pediatric case of primary amoebic meningoencephalitis due to Naegleria fowleri diagnosed by next-generation sequencing of cerebrospinal fluid and blood samples

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shiqin Huang ◽  
Xiu’an Liang ◽  
Yunli Han ◽  
Yanyan Zhang ◽  
Xinhui Li ◽  
...  

Abstract Background Primary amoebic meningoencephalitis (PAM) is a rare, acute and fatal disease of the central nervous system caused by infection with Naegleria fowleri (Heggie, in Travel Med Infect Dis 8:201–6, 2010). Presently, the majority of reported cases in the literature have been diagnosed through pathogen detection pathogens in the cerebrospinal fluid (CSF). This report highlights the first case of pediatric PAM diagnosed with amoeba infiltration within CSF and bloodstream of an 8-year-old male child, validated through meta-genomic next-generation sequencing (mNGS). Case presentation An 8-year-old male child was admitted to hospital following 24 h of fever, headache and vomiting and rapidly entered into a coma. CSF examination was consistent with typical bacterial meningitis. However, since targeted treatment for this condition proved to be futile, the patient rapidly progressed to brain death. Finally, the patient was referred to our hospital where he was confirmed with brain death. CSF and blood samples were consequently analyzed through mNGS. N. fowleri was detected in both samples, although the sequence copy number in the blood was lower than for CSF. The pathogen diagnosis was further verified by PCR and Sanger sequencing. Conclusions This is the first reported case of pediatric PAM found in mainland China. The results indicate that N. fowleri may spread outside the central nervous system through a damaged blood–brain barrier.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1751-1751
Author(s):  
Sarah Grasedieck ◽  
Medhanie A. Mulaw ◽  
Christina Miller ◽  
Arefeh Rouhi ◽  
Jeanette K Doorduijn ◽  
...  

Abstract Early diagnosis and therapy monitoring have improved overall survival of lymphoma patients. Biomarkers from body fluids are an active field of research for diagnosing and monitoring malignant diseases. MicroRNAs (miRNAs) are present in all body fluids and have already been described as biomarkers in lymphoma patients. However, only few studies addressed the impact of miRNAs as diagnostic tools for central nervous system (CNS) involvement of systemic lymphomas (CNS positive lymphomas). In addition, due to technical limitations such as low cerebrospinal fluid (CSF) starting amounts, translation into clinical application has been very limited. In order to facilitate development of an applicable diagnostic assay of circulating miRNAs from low CSF starting volumes (400ml), we compared quantitative realtime PCR (qRT-PCR) arrays with next generation sequencing (miRNA-Seq) and established a protocol to robustly quantify a miRNA signature for CNS positive lymphomas from diagnostic volumes of CSF. First, we could show that circulating miRNAs are highly stable in CSF and that miRNA levels can be assessed robustly with qRT-PCR and miRNA-Seq. For this purpose, miRNAs were extracted from 400µL of CSF using an optimized miRNA extraction protocol. MiRNAs were quantified by qRT-PCR with the Exiqon Human miRNome Panel v2 which assays 752 miRNAs or by miRNA-Seq of libraries prepared with the Seqmatic TailorMix v2 miRNA Sample Preparation Kit using the Illumina HiSeq. In total, eight patients with diffuse large B-cell lymphoma (DLBCL) that showed involvement of the central nervous system (CNS) were analyzed. Of each patient, two paired CSF samples were available both from initial diagnosis and complete remission after treatment. The presence of CNS manifestation was established via magnetic resonance imaging (MRI) and flow cytometry at the Erasmus MC Daniel den Hoed Cancer Center in Rotterdam. CSF from ten patients with cephalalgia was used as a control. After inter-plate calibration and normalization, 260 miRNAs were detected on average with the Exiqon Human miRNome Panel v2. In order to assess the probability of deriving false positive signals from e.g. primer dimers, two miRNome Panels (four 384-well plates) were processed without template. Surprisingly, after 40 cycles of qRT-PCR, 10% of assays showed amplicons in duplicates. Furthermore, false positive amplicons were not reproducible using this method, underlining that qRT-PCR had a low overall specificity that could not be adjusted by exclusion of erroneous amplicons. In contrast, miRNA seq produced a median of ~40,000 mappable reads per sample (range 2x104 - 1x106) with a Phred score of >20. Prediction analysis using all detectable miRNAs segregated CSF samples from CSF positive lymphoma patients before treatment and after treatment based on a 14-miRNA signature with a misclassification error of <0.1. Unsupervised clustering of the 14-miRNA signature correctly stratified 7/8 samples after treatment i.e. CSF negative lymphomas, while 4/5 samples from patients with CSF positive lymphomas clustered separately. Thus, using the expression levels of only 14 miRNAs determined with miRNA-Seq, the two disease stages could be differentiated with each group containing one misclassification. The robust quantification of miRNAs from small volumes of CSF with next generation sequencing has potential to monitor minimal residual disease diagnosis or even to stratify other pathologic entities such as dementias or inflammatory diseases where only unreliable markers or no biomarkers at all are currently available. Disclosures Mulaw: NuGEN: Honoraria.


2019 ◽  
Author(s):  
Siyuan Fan ◽  
Xiaojuan Wang ◽  
Yafang Hu ◽  
Jingping Shi ◽  
Yueli Zou ◽  
...  

ABSTRACTBackgroundInfectious encephalitis and meningitis are often treated empirically without identification of the causative pathogen. Metagenomic next-generation sequencing (mNGS) is a high throughput technology that enables the detection of pathogens independent of prior clinical or laboratory information.MethodsThe present study was a multicentre prospective evaluation of mNGS of cerebrospinal fluid (CSF) for the diagnosis of suspected central nervous system infections.ResultsA total of 276 patients were enrolled in this study between Jan 1, 2017 and Jan 1, 2018. Identification of an etiologic pathogen in CSF by mNGS was achieved in 101 patients (36.6%). mNGS detected 11 bacterial species, 7 viral species, 2 fungal species, and 2 parasitic species. The five leading positive detections were varicella-zoster virus (17), Mycobacterium tuberculosis (14), herpes simplex virus 1 (12), Epstein-Barr virus (12), and Cryptococcus neoformans (7). False positives occurred in 12 (4.3%) patients with bacterial infections known to be widespread in hospital environments. False negatives occurred in 16 (5.8%) patients and included bacterial, viral and fungal aetiologies.ConclusionsmNGS of CSF is a powerful diagnostic method to identify the pathogen for many central nervous system infections.


2019 ◽  
Author(s):  
Siyuan Fan ◽  
Xiaojuan Wang ◽  
Yafang Hu ◽  
Jingping Shi ◽  
Yueli Zou ◽  
...  

Abstract Background: Infectious encephalitis and meningitis are often treated empirically without identification of the causative pathogen, even if comprehensive conventional diagnostic technologies are applied. Metagenomic next-generation sequencing (mNGS) is a high throughput technology that enables the detection of pathogens independent of prior clinical or laboratory information.Methods: The present study was a multicentre prospective evaluation of mNGS of cerebrospinal fluid (CSF) for the diagnosis of suspected central nervous system infections in China, where routine PCR was not widely used. Results: A total of 276 patients were enrolled in this study between Jan 1, 2017 and Jan 1, 2018. Identification of an aetiologic pathogen in CSF by mNGS was achieved in 101 patients (36.6%). mNGS detected 11 bacterial species, 7 viral species, 2 fungal species, and 2 parasitic species. The leading positive detections were Mycobacterium tuberculosis (14), Listeria monocytogenes (8), Brucella (7), varicella-zoster virus (17), herpes simplex virus 1 (12), Epstein-Barr virus (12), and Cryptococcus neoformans (7). False positives occurred in 12 (4.3%) patients with bacterial infections known to be widespread in hospital environments. False negatives occurred in 16 (5.8%) patients and included bacterial, viral and fungal aetiologies. Conclusions: This study shows that mNGS of CSF is a powerful diagnostic method to identify the pathogen for many central nervous system infections. The result of mNGS should be interpreted with clinical information sometimes.


2020 ◽  
pp. 088307382097223
Author(s):  
Guliz Erdem ◽  
Irina Kaptsan ◽  
Himanshu Sharma ◽  
Arvind Kumar ◽  
Shawn C. Aylward ◽  
...  

Background: Metagenomic next-generation sequencing offers an unbiased approach to identifying viral pathogens in cerebrospinal fluid of patients with meningoencephalitis of unknown etiology. Methods: In an 11-month case series, we investigated the use of cerebrospinal fluid metagenomic next-generation sequencing to diagnose viral infections among pediatric hospitalized patients presenting with encephalitis or meningoencephalitis of unknown etiology. Cerebrospinal fluid from patients with known enterovirus meningitis were included as positive controls. Cerebrospinal fluid from patients with primary intracranial hypertension were included to serve as controls without known infections. Results: Cerebrospinal fluid metagenomic next-generation sequencing was performed for 37 patients. Among 27 patients with encephalitis or meningoencephalitis, 4 were later diagnosed with viral encephalitis, 6 had non–central nervous system infections with central nervous system manifestations, 6 had no positive diagnostic tests, and 11 were found to have a noninfectious diagnosis. Metagenomic next-generation sequencing identified West Nile virus (WNV) in the cerebrospinal fluid of 1 immunocompromised patient. Among the 4 patients with known enterovirus meningitis, metagenomic next-generation sequencing correctly identified enteroviruses and characterized the viral genotype. No viral sequences were detected in the cerebrospinal fluid of patients with primary intracranial hypertension. Metagenomic next-generation sequencing also identified sequences of nonpathogenic torque Teno virus in cerebrospinal fluid specimens from 13 patients. Conclusions: Our results showed viral detection by cerebrospinal fluid metagenomic next-generation sequencing only in 1 immunocompromised patient and did not offer a diagnostic advantage over conventional testing. Viral phylogenetic characterization by metagenomic next-generation sequencing could be used in epidemiologic investigations of some viral pathogens, such as enteroviruses. The finding of torque Teno viruses in cerebrospinal fluid by metagenomic next-generation sequencing is of unknown significance but may merit further exploration for a possible association with noninfectious central nervous system disorders.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Feng ◽  
Aiwu Zhang ◽  
Jiali Que ◽  
Hongyan Zhou ◽  
Haiyan Wang ◽  
...  

Abstract Backgrounds The incidence of angiostrongyliasis is increasing in recent decades due to the expanding endemic areas all over the world. Clinicians face tremendous challenge of diagnosing angiostrongyliasis because of the lack of awareness of the disease and less effective definitive laboratory tests. Case presentation A 27-year-old man initially manifested skin itching, emesis, myalgia and quadriparesis. With progressive weakness of four limbs and elevated protein in the cerebrospinal fluid (CSF), he was diagnosed as Guillain-Barré syndrome and treated with intravenous methylprednisolone and immunoglobulin. However, the patient deteriorated with hyperpyrexia, headache and then persistent coma. The routine tests for Angiostrongylus cantonensis (A. cantonensis) with both the CSF and the serum were all negative. In contrast, the metagenomic next-generation sequencing (mNGS) was applied with the serum sample and the CSF sample in the middle phase. The central nervous system (CNS) angiostrongyliasis was diagnosed by mNGS with the mid-phase CSF, but not the mid-phase serum. At the same time, the CSF analysis revealed eosinophils ratio up to 67%. The discovery of A. cantonensis was confirmed by PCR with CSF later. Unfortunately, the patient died of severe angiostrongyliasis. During his hospitalization, mNGS was carried out repeatedly after definitive diagnosis and targeted treatment. The DNA strictly map reads number of A. cantonensis detected by mNGS was positively correlated with the CSF opening pressure and clinical manifestations. Conclusions The case of A. cantonensis infection highlights the benefit of mNGS as a target-free identification in disclosing the rare CNS angiostrongyliasis in the unusual season, while solid evidence from routine clinical testing was absent. The appropriate sample of mNGS should be chosen according to the life cycle of A. cantonensis. Besides, given the fact that the DNA reads number of A. cantonensis fluctuated with CSF opening pressure and clinical manifestations, whether mNGS could be applied as a marker of effectiveness of treatment is worth further exploration.


Tick-borne encephalitis (TBE) is a viral infectious disease of the central nervous system caused by the tick-borne encephalitis virus (TBEV). TBE is usually a biphasic disease and in humans the virus can only be detected during the first (unspecific) phase of the disease. Pathogenesis of TBE is not well understood, but both direct viral effects and immune-mediated tissue damage of the central nervous system may contribute to the natural course of TBE. The effect of TBEV on the innate immune system has mainly been studied in vitro and in mouse models. Characterization of human immune responses to TBEV is primarily conducted in peripheral blood and cerebrospinal fluid, due to the inaccessibility of brain tissue for sample collection. Natural killer (NK) cells and T cells are activated during the second (meningo-encephalitic) phase of TBE. The potential involvement of other cell types has not been examined to date. Immune cells from peripheral blood, in particular neutrophils, T cells, B cells and NK cells, infiltrate into the cerebrospinal fluid of TBE patients.


Sign in / Sign up

Export Citation Format

Share Document