scholarly journals Weighing features of lung and heart regions for thoracic disease classification

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiansheng Fang ◽  
Yanwu Xu ◽  
Yitian Zhao ◽  
Yuguang Yan ◽  
Junling Liu ◽  
...  

Abstract Background Chest X-rays are the most commonly available and affordable radiological examination for screening thoracic diseases. According to the domain knowledge of screening chest X-rays, the pathological information usually lay on the lung and heart regions. However, it is costly to acquire region-level annotation in practice, and model training mainly relies on image-level class labels in a weakly supervised manner, which is highly challenging for computer-aided chest X-ray screening. To address this issue, some methods have been proposed recently to identify local regions containing pathological information, which is vital for thoracic disease classification. Inspired by this, we propose a novel deep learning framework to explore discriminative information from lung and heart regions. Result We design a feature extractor equipped with a multi-scale attention module to learn global attention maps from global images. To exploit disease-specific cues effectively, we locate lung and heart regions containing pathological information by a well-trained pixel-wise segmentation model to generate binarization masks. By introducing element-wise logical AND operator on the learned global attention maps and the binarization masks, we obtain local attention maps in which pixels are are 1 for lung and heart region and 0 for other regions. By zeroing features of non-lung and heart regions in attention maps, we can effectively exploit their disease-specific cues in lung and heart regions. Compared to existing methods fusing global and local features, we adopt feature weighting to avoid weakening visual cues unique to lung and heart regions. Our method with pixel-wise segmentation can help overcome the deviation of locating local regions. Evaluated by the benchmark split on the publicly available chest X-ray14 dataset, the comprehensive experiments show that our method achieves superior performance compared to the state-of-the-art methods. Conclusion We propose a novel deep framework for the multi-label classification of thoracic diseases in chest X-ray images. The proposed network aims to effectively exploit pathological regions containing the main cues for chest X-ray screening. Our proposed network has been used in clinic screening to assist the radiologists. Chest X-ray accounts for a significant proportion of radiological examinations. It is valuable to explore more methods for improving performance.

2019 ◽  
Vol 75 ◽  
pp. 66-73 ◽  
Author(s):  
Han Liu ◽  
Lei Wang ◽  
Yandong Nan ◽  
Faguang Jin ◽  
Qi Wang ◽  
...  

Author(s):  
V. N. Manjunath Aradhya ◽  
Mufti Mahmud ◽  
D. S. Guru ◽  
Basant Agarwal ◽  
M. Shamim Kaiser

AbstractCoronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.


2020 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Sagar Kora Venu ◽  
Sridhar Ravula

Medical image datasets are usually imbalanced due to the high costs of obtaining the data and time-consuming annotations. Training a deep neural network model on such datasets to accurately classify the medical condition does not yield the desired results as they often over-fit the majority class samples’ data. Data augmentation is often performed on the training data to address the issue by position augmentation techniques such as scaling, cropping, flipping, padding, rotation, translation, affine transformation, and color augmentation techniques such as brightness, contrast, saturation, and hue to increase the dataset sizes. Radiologists generally use chest X-rays for the diagnosis of pneumonia. Due to patient privacy concerns, access to such data is often protected. In this study, we performed data augmentation on the Chest X-ray dataset to generate artificial chest X-ray images of the under-represented class through generative modeling techniques such as the Deep Convolutional Generative Adversarial Network (DCGAN). With just 1341 chest X-ray images labeled as Normal, artificial samples were created by retaining similar characteristics to the original data with this technique. Evaluating the model resulted in a Fréchet Distance of Inception (FID) score of 1.289. We further show the superior performance of a CNN classifier trained on the DCGAN augmented dataset.


2021 ◽  
Vol 7 ◽  
pp. e738
Author(s):  
Mumtaz Ali ◽  
Riaz Ali

Conventionally, convolutional neural networks (CNNs) have been used to identify and detect thorax diseases on chest x-ray images. To identify thorax diseases, CNNs typically learn two types of information: disease-specific features and generic anatomical features. CNNs focus on disease-specific features while ignoring the rest of the anatomical features during their operation. There is no evidence that generic anatomical features improve or worsen the performance of convolutional neural networks for thorax disease classification in the current research. As a consequence, the relevance of general anatomical features in boosting the performance of CNNs for thorax disease classification is investigated in this study. We employ a dual-stream CNN model to learn anatomical features before training the model for thorax disease classification. The dual-stream technique is used to compel the model to learn structural information because initial layers of CNNs often learn features of edges and boundaries. As a result, a dual-stream model with minimal layers learns structural and anatomical features as a priority. To make the technique more comprehensive, we first train the model to identify gender and age and then classify thorax diseases using the information acquired. Only when the model learns the anatomical features can it detect gender and age. We also use Non-negative Matrix Factorization (NMF) and Contrast Limited Adaptive Histogram Equalization (CLAHE) to pre-process the training data, which suppresses disease-related information while amplifying general anatomical features, allowing the model to acquire anatomical features considerably faster. Finally, the model that was earlier trained for gender and age detection is retrained for thorax disease classification using original data. The proposed technique increases the performance of convolutional neural networks for thorax disease classification, as per experiments on the Chest X-ray14 dataset. We can also see the significant parts of the image that contribute more for gender, age, and a certain thorax disease by visualizing the features. The proposed study achieves two goals: first, it produces novel gender and age identification results on chest X-ray images that may be used in biometrics, forensics, and anthropology, and second, it highlights the importance of general anatomical features in thorax disease classification. In comparison to state-of-the-art results, the proposed work also produces competitive results.


Author(s):  
Puneet Gupta

Abstract— Pneumonia is a life-threatening infectious disease affecting one or both lungs in humans commonly caused by bacteria called Streptococcus pneumoniae. One in three deaths in India is caused due to pneumonia as reported by World Health Organization (WHO). Chest X-Rays which are used to diagnose pneumonia, need expert radiotherapists for evaluation. Thus, developing an automatic system for detecting pneumonia would be beneficial for treating the disease without any delay particularly in remote areas. Due to the success of deep learning algorithms in analyzing medical images, Convolutional Neural Networks (CNNs) have gained much attention for disease classification. In addition, features learned by pre-trained CNN models on large-scale datasets are much useful in image classification tasks. In this work, we appraise the functionality of pre-trained CNN models utilized as feature-extractors followed by different classifiers for the classification of abnormal and normal chest X-Rays. We analytically determine the optimal CNN model for the purpose. Statistical results obtained demonstrates that pretrained CNN models employed along with supervised classifier algorithms can be very beneficial in analyzing chest X-ray images, specifically to detect Pneumonia. In this project Transfer learning and a CNN Model is used to detect whether the person has pneumonia or not using chest x-ray.


2021 ◽  
Vol 35 (2) ◽  
pp. 93-94
Author(s):  
Jyotsna Bhushan ◽  
Shagufta Iqbal ◽  
Abhishek Chopra

A clinical case report of spontaneous pneumomediastinum in a late-preterm neonate, chest x-ray showing classical “spinnaker sail sign,” which was managed conservatively and had excellent prognosis on conservative management. Respiratory distress in a preterm neonate is a common clinical finding. Common causes include respiratory distress syndrome, transient tachypnea of the newborn, pneumonia, and pneumothorax. Pneumomediastinum is not very common cause of respiratory distress and more so spontaneous pneumomediastinum. We report here a preterm neonate with spontaneous pneumomediastinum who had excellent clinical recovery with conservative management. A male baby was delivered to G3P1A1 mother at 34 + 6 weeks through caesarean section done due to abruptio placenta. Apgar scores were 8 and 9. Maternal antenatal history was uneventful and there were no risk factors for early onset sepsis. Baby had respiratory distress soon after birth with Silverman score being 2/10. Baby was started on oxygen (O2) by nasal prongs through blender 0.5 l/min, FiO2 25%, and intravenous fluids. Blood gas done was normal. Possibility of transient tachypnea of newborn or mild hyaline membrane disease was kept. Respiratory distress increased at 20 h of life (Silverman score: 5), urgent chest x-ray done revealed “spinnaker sign” suggestive of pneumomediastinum, so baby was shifted to O2 by hood with FiO2 being 70%. Blood gas repeated was normal. Baby was managed conservatively on intravenous fluids and O2 by hood. Baby was gradually weaned off from O2 over next 5 days. As respiratory distress decreased, baby was started on orogastric feed, which baby tolerated well and then was switched to oral feeds. Serial x-rays showed resolution of pneumomediastinum. Baby was discharged on day 7 of life in stable condition on breast feeds and room air.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
Aristida Georgescu ◽  
Crinu Nuta ◽  
Simona Bondari

Unilateral primary pulmonary hypoplasia is rare in adulthood (UPHA); it is characterized by a decreased number of bronchial segmentation and decreased/absent alveolar air space. Classical chest X-ray may be confusing, and the biological tests are unspecific. We present a case of UPHA in a 60-year-old female, smoker, with 3 term normal deliveries, who presented with late recurrent pneumonias and bronchiectasis-type symptomathology, arterial hypertension, and obesity. Chest X-rays revealed opacity in the left lower pulmonary zone, an apparent hypoaerated upper left lobe and left deviation of the mediastinum. Preoperatory multidetector computer tomography (MDCT) presented a small retrocardiac left lung with 5-6 bronchial segmentation range and cystic appearance. After pneumonectomy the gross specimen showed a small lung with multiple bronchiectasis and small cysts, lined by hyperplasic epithelium, surrounded by stromal fibrosclerosis. We concluded that this UPHA occurred in the 4–7 embryonic weeks, and the 3D MDCT reconstructions offered the best noninvasive diagnosis.


Sign in / Sign up

Export Citation Format

Share Document