scholarly journals One-shot Cluster-Based Approach for the Detection of COVID–19 from Chest X–ray Images

Author(s):  
V. N. Manjunath Aradhya ◽  
Mufti Mahmud ◽  
D. S. Guru ◽  
Basant Agarwal ◽  
M. Shamim Kaiser

AbstractCoronavirus disease (COVID-19) has infected over more than 28.3 million people around the globe and killed 913K people worldwide as on 11 September 2020. With this pandemic, to combat the spreading of COVID-19, effective testing methodologies and immediate medical treatments are much required. Chest X-rays are the widely available modalities for immediate diagnosis of COVID-19. Hence, automation of detection of COVID-19 from chest X-ray images using machine learning approaches is of greater demand. A model for detecting COVID-19 from chest X-ray images is proposed in this paper. A novel concept of cluster-based one-shot learning is introduced in this work. The introduced concept has an advantage of learning from a few samples against learning from many samples in case of deep leaning architectures. The proposed model is a multi-class classification model as it classifies images of four classes, viz., pneumonia bacterial, pneumonia virus, normal, and COVID-19. The proposed model is based on ensemble of Generalized Regression Neural Network (GRNN) and Probabilistic Neural Network (PNN) classifiers at decision level. The effectiveness of the proposed model has been demonstrated through extensive experimentation on a publicly available dataset consisting of 306 images. The proposed cluster-based one-shot learning has been found to be more effective on GRNN and PNN ensembled model to distinguish COVID-19 images from that of the other three classes. It has also been experimentally observed that the model has a superior performance over contemporary deep learning architectures. The concept of one-shot cluster-based learning is being first of its kind in literature, expected to open up several new dimensions in the field of machine learning which require further researching for various applications.

2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


2022 ◽  
Vol 3 ◽  
Author(s):  
Luís Vinícius de Moura ◽  
Christian Mattjie ◽  
Caroline Machado Dartora ◽  
Rodrigo C. Barros ◽  
Ana Maria Marques da Silva

Both reverse transcription-PCR (RT-PCR) and chest X-rays are used for the diagnosis of the coronavirus disease-2019 (COVID-19). However, COVID-19 pneumonia does not have a defined set of radiological findings. Our work aims to investigate radiomic features and classification models to differentiate chest X-ray images of COVID-19-based pneumonia and other types of lung patterns. The goal is to provide grounds for understanding the distinctive COVID-19 radiographic texture features using supervised ensemble machine learning methods based on trees through the interpretable Shapley Additive Explanations (SHAP) approach. We use 2,611 COVID-19 chest X-ray images and 2,611 non-COVID-19 chest X-rays. After segmenting the lung in three zones and laterally, a histogram normalization is applied, and radiomic features are extracted. SHAP recursive feature elimination with cross-validation is used to select features. Hyperparameter optimization of XGBoost and Random Forest ensemble tree models is applied using random search. The best classification model was XGBoost, with an accuracy of 0.82 and a sensitivity of 0.82. The explainable model showed the importance of the middle left and superior right lung zones in classifying COVID-19 pneumonia from other lung patterns.


Author(s):  
Dipayan Das ◽  
KC Santosh ◽  
Umapada Pal

Abstract Since December 2019, the Coronavirus Disease (COVID-19) pandemic has caused world-wide turmoil in less than a couple of months, and the infection, caused by SARS-CoV-2, is spreading at an unprecedented rate. AI-driven tools are used to identify Coronavirus outbreaks as well as forecast their nature of spread, where imaging techniques are widely used, such as CT scans and chest X-rays (CXRs). In this paper, motivated by the fact that X-ray imaging systems are more prevalent and cheaper than CT scan systems, a deep learning-based Convolutional Neural Network (CNN) model, which we call Truncated Inception Net, is proposed to screen COVID-19 positive CXRs from other non-COVID and/or healthy cases. To validate our proposal, six different types of datasets were employed by taking the following CXRs: COVID-19 positive, Pneumonia positive, Tuberculosis positive, and healthy cases into account. The proposed model achieved an accuracy of 99.96% (AUC of 1.0) in classifying COVID- 19 positive cases from combined Pneumonia and healthy cases. Similarly, it achieved an accuracy of 99.92% (AUC of 0.99) in classifying COVID-19 positive cases from combined Pneumonia, Tuberculosis and healthy CXRs. To the best of our knowledge, as of now, the achieved results outperform the existing AI-driven tools for screening COVID-19 using CXRs.


2021 ◽  
Author(s):  
Mohammed Ayub ◽  
SanLinn Kaka

Abstract Manual first-break picking from a large volume of seismic data is extremely tedious and costly. Deployment of machine learning models makes the process fast and cost effective. However, these machine learning models require high representative and effective features for accurate automatic picking. Therefore, First- Break (FB) picking classification model that uses effective minimum number of features and promises performance efficiency is proposed. The variants of Recurrent Neural Networks (RNNs) such as Long ShortTerm Memory (LSTM) and Gated Recurrent Unit (GRU) can retain contextual information from long previous time steps. We deploy this advantage for FB picking as seismic traces are amplitude values of vibration along the time-axis. We use behavioral fluctuation of amplitude as input features for LSTM and GRU. The models are trained on noisy data and tested for generalization on original traces not seen during the training and validation process. In order to analyze the real-time suitability, the performance is benchmarked using accuracy, F1-measure and three other established metrics. We have trained two RNN models and two deep Neural Network models for FB classification using only amplitude values as features. Both LSTM and GRU have the accuracy and F1-measure with a score of 94.20%. With the same features, Convolutional Neural Network (CNN) has an accuracy of 93.58% and F1-score of 93.63%. Again, Deep Neural Network (DNN) model has scores of 92.83% and 92.59% as accuracy and F1-measure, respectively. From the pexperiment results, we see significant superior performance of LSTM and GRU to CNN and DNN when used the same features. For robustness of LSTM and GRU models, the performance is compared with DNN model that is trained using nine features derived from seismic traces and observed that the performance superiority of RNN models. Therefore, it is safe to conclude that RNN models (LSTM and GRU) are capable of classifying the FB events efficiently even by using a minimum number of features that are not computationally expensive. The novelty of our work is the capability of automatic FB classification with the RNN models that incorporate contextual behavioral information without the need for sophisticated feature extraction or engineering techniques that in turn can help in reducing the cost and fostering classification model robust and faster.


Author(s):  
P. Srinivasa Rao ◽  
Pradeep Bheemavarapu ◽  
P. S. Latha Kalyampudi ◽  
T. V. Madhusudhana Rao

Background: Coronavirus (COVID-19) is a group of infectious diseases caused by related viruses called coronaviruses. In humans, the seriousness of infection caused by a coronavirus in the respiratory tract can vary from mild to lethal. A serious illness can be developed in old people and those with underlying medical problems like diabetes, cardiovascular disease, cancer, and chronic respiratory disease. For the diagnosis of the coronavirus disease, due to the growing number of cases, a limited number of test kits for COVID-19 are available in the hospitals. Hence, it is important to implement an automated system as an immediate alternative diagnostic option to pause the spread of COVID-19 in the population. Objective: This paper proposes a deep learning model for classification of coronavirus infected patient detection using chest X-ray radiographs. Methods: A fully connected convolutional neural network model is developed to classify healthy and diseased X-ray radiographs. The proposed neural network model consists of seven convolutional layers with rectified linear unit, softmax (last layer) activation functions and max pooling layers which were trained using the publicly available COVID-19 dataset. Results and Conclusion: For validation of the proposed model, the publicly available chest X-ray radiograph dataset consisting COVID-19 and normal patient’s images were used. Considering the performance of the results that are evaluated based on various evaluation metrics such as precision, recall, MSE, RMSE & accuracy, it is seen that the accuracy of the proposed CNN model is 98.07%.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012001
Author(s):  
J Ureta ◽  
A Shrestha

Abstract Tuberculosis(TB) is one of the top 10 causes of death worldwide, and drug-resistant TB is a major public health concern especially in resource-constrained countries. In such countries, molecular diagnosis of drug-resistant TB remains a challenge; and imaging tools such as X-rays, which are cheaply and widely available, can be a valuable supplemental resource for early detection and screening. This study uses a specialized convolutional neural network to perform binary classification of chest X-ray images to classify drug-resistant and drug-sensitive TB. The models were trained and validated using the TBPortals dataset which contains 2,973 labeled X-ray images from TB patients. The classifiers were able to identify the presence or absence of drug-resistant Tuberculosis with an AUROC between 0.66–0.67, which is an improvement over previous attempts using deep learning networks.


Author(s):  
Deepali R Deshpande ◽  
Raj L Shah ◽  
Anish N Shaha

The motive behind the project is to build a machine learning model for detection of Covid-19. Using this model, it is possible to classify images of chest x-rays into normal patients, pneumatic patients, and covid-19 positive patients. This CNN based model will help drastically to save time constraints among the patients. Instead of relying on limited RT-PCR kits, just a simple chest x-ray can help us determine health of the patient. Not only we get immediate results, but we can also practice social distancing norms more effectively.


2020 ◽  
Author(s):  
Amit Kumar Jaiswal ◽  
Prayag Tiwari ◽  
Vipin Kumar Rathi ◽  
Jia Qian ◽  
Hari Mohan Pandey ◽  
...  

The trending global pandemic of COVID-19 is the fastest ever impact which caused people worldwide by severe acute respiratory syndrome~(SARS)-driven coronavirus. However, several countries suffer from the shortage of test kits and high false negative rate in PCR test. Enhancing the chest X-ray or CT detection rate becomes critical. The patient triage is of utmost importance and the use of machine learning can drive the diagnosis of chest X-ray or CT image by identifying COVID-19 cases. To tackle this problem, we propose~COVIDPEN~-~a transfer learning approach on Pruned EfficientNet-based model for the detection of COVID-19 cases. The proposed model is further interpolated by post-hoc analysis for the explainability of the predictions. The effectiveness of our proposed model is demonstrated on two systematic datasets of chest radiographs and computed tomography scans. Experimental results with several baseline comparisons show that our method is on par and confers clinically explicable instances, which are meant for healthcare providers.


AI ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 418-435
Author(s):  
Khandaker Haque ◽  
Ahmed Abdelgawad

Deep Learning has improved multi-fold in recent years and it has been playing a great role in image classification which also includes medical imaging. Convolutional Neural Networks (CNNs) have been performing well in detecting many diseases including coronary artery disease, malaria, Alzheimer’s disease, different dental diseases, and Parkinson’s disease. Like other cases, CNN has a substantial prospect in detecting COVID-19 patients with medical images like chest X-rays and CTs. Coronavirus or COVID-19 has been declared a global pandemic by the World Health Organization (WHO). As of 8 August 2020, the total COVID-19 confirmed cases are 19.18 M and deaths are 0.716 M worldwide. Detecting Coronavirus positive patients is very important in preventing the spread of this virus. On this conquest, a CNN model is proposed to detect COVID-19 patients from chest X-ray images. Two more CNN models with different number of convolution layers and three other models based on pretrained ResNet50, VGG-16 and VGG-19 are evaluated with comparative analytical analysis. All six models are trained and validated with Dataset 1 and Dataset 2. Dataset 1 has 201 normal and 201 COVID-19 chest X-rays whereas Dataset 2 is comparatively larger with 659 normal and 295 COVID-19 chest X-ray images. The proposed model performs with an accuracy of 98.3% and a precision of 96.72% with Dataset 2. This model gives the Receiver Operating Characteristic (ROC) curve area of 0.983 and F1-score of 98.3 with Dataset 2. Moreover, this work shows a comparative analysis of how change in convolutional layers and increase in dataset affect classifying performances.


Author(s):  
Dilbag Singh ◽  
Vijay Kumar ◽  
Vaishali Yadav ◽  
Manjit Kaur

There are limited coronavirus disease 2019 (COVID-19) testing kits, therefore, development of other diagnosis approaches is desirable. The doctors generally utilize chest X-rays and Computed Tomography (CT) scans to diagnose pneumonia, lung inflammation, abscesses, and/or enlarged lymph nodes. Since COVID-19 attacks the epithelial cells that line our respiratory tract, therefore, X-ray images are utilized in this paper, to classify the patients with infected (COVID-19 [Formula: see text]ve) and uninfected (COVID-19 [Formula: see text]ve) lungs. Almost all hospitals have X-ray imaging machines, therefore, the chest X-ray images can be used to test for COVID-19 without utilizing any kind of dedicated test kits. However, the chest X-ray-based COVID-19 classification requires a radiology expert and significant time, which is precious when COVID-19 infection is increasing at a rapid rate. Therefore, the development of an automated analysis approach is desirable to save the medical professionals’ valuable time. In this paper, a deep convolutional neural network (CNN) approach is designed and implemented. Besides, the hyper-parameters of CNN are tuned using Multi-objective Adaptive Differential Evolution (MADE). Extensive experiments are performed by considering the benchmark COVID-19 dataset. Comparative analysis reveals that the proposed technique outperforms the competitive machine learning models in terms of various performance metrics.


Sign in / Sign up

Export Citation Format

Share Document