scholarly journals Altered local and matrix functional connectivity in depressed essential tremor patients

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiyue Duan ◽  
Zhou Fang ◽  
Li Tao ◽  
Huiyue Chen ◽  
Xiaoyu Zhang ◽  
...  

Abstract Background Depression in essential tremor (ET) has been constantly studied and reported, while the associated brain activity changes remain unclear. Recently, regional homogeneity (ReHo), a voxel-wise local functional connectivity (FC) analysis of resting-state functional magnetic resonance imaging, has provided a promising way to observe spontaneous brain activity. Methods Local FC analyses were performed in forty-one depressed ET patients, 49 non-depressed ET patients and 43 healthy controls (HCs), and then matrix FC and clinical depression severity correlation analyses were further performed to reveal spontaneous neural activity changes in depressed ET patients. Results Compared with the non-depressed ET patients, the depressed ET patients showed decreased ReHo in the bilateral cerebellum lobules IX, and increased ReHo in the bilateral anterior cingulate cortices and middle prefrontal cortices. Twenty-five significant changes of ReHo clusters were observed in the depressed ET patients compared with the HCs, and matrix FC analysis further revealed that inter-ROI FC differences were also observed in the frontal-cerebellar-anterior cingulate cortex pathway. Correlation analyses showed that clinical depression severity was positively correlated with the inter-ROI FC values between the anterior cingulate cortex and bilateral middle prefrontal cortices and was negatively correlated with the inter-ROI FC values of the anterior cingulate cortex and bilateral cerebellum lobules IX. Conclusion Our findings revealed local and inter-ROI FC differences in frontal-cerebellar-anterior cingulate cortex circuits in depressed ET patients, and among these regions, the cerebellum lobules IX, middle prefrontal cortices and anterior cingulate cortices could function as pathogenic structures underlying depression in ET patients.

2021 ◽  
Vol 13 ◽  
Author(s):  
Juan L. Terrasa ◽  
Pedro Montoya ◽  
Carolina Sitges ◽  
Marian van der Meulen ◽  
Fernand Anton ◽  
...  

Alterations in the affective component of pain perception are related to the development of chronic pain and may contribute to the increased vulnerability to pain observed in aging. The present study analyzed age-related changes in resting-state brain activity and their possible relation to an increased pain perception in older adults. For this purpose, we compared EEG current source density and fMRI functional-connectivity at rest in older (n = 20, 66.21 ± 3.08 years) and younger adults (n = 21, 20.71 ± 2.30 years) and correlated those brain activity parameters with pain intensity and unpleasantness ratings elicited by painful stimulation. We found an age-related increase in beta2 and beta3 activity in temporal, frontal, and limbic areas, and a decrease in alpha activity in frontal areas. Moreover, older participants displayed increased functional connectivity in the anterior cingulate cortex (ACC) and the insula with precentral and postcentral gyrus. Finally, ACC beta3 activity was positively correlated with pain intensity and unpleasantness ratings in older, and ACC-precentral/postcentral gyrus connectivity was positively correlated with unpleasantness ratings in older and younger participants. These results reveal that ACC resting-state hyperactivity is a stable trait of brain aging and may underlie their characteristic altered pain perception.


2014 ◽  
Vol 111 (4) ◽  
pp. 787-803 ◽  
Author(s):  
Michael J. Koval ◽  
R. Matthew Hutchison ◽  
Stephen G. Lomber ◽  
Stefan Everling

The dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) have both been implicated in the cognitive control of saccadic eye movements by single neuron recording studies in nonhuman primates and functional imaging studies in humans, but their relative roles remain unclear. Here, we reversibly deactivated either dlPFC or ACC subregions in macaque monkeys while the animals performed randomly interleaved pro- and antisaccades. In addition, we explored the whole-brain functional connectivity of these two regions by applying a seed-based resting-state functional MRI analysis in a separate cohort of monkeys. We found that unilateral dlPFC deactivation had stronger behavioral effects on saccades than unilateral ACC deactivation, and that the dlPFC displayed stronger functional connectivity with frontoparietal areas than the ACC. We suggest that the dlPFC plays a more prominent role in the preparation of pro- and antisaccades than the ACC.


2019 ◽  
Author(s):  
Mordechai Hayman ◽  
Shahar Arzy

“Mental travel” is the ability to imagine oneself in different places and times and to adopt other people’s point of view (POV), also termed “Theory of Mind (ToM)”. While ToM has been extensively investigated, self-projection with respect to ones’ own and others’ social networks has yet to be systematically studied.Here we asked participants to “project” themselves to four different POVs: a significant other, a non-significant other, a famous-person, and their own-self. From each POV they were asked to rate the level of affiliation (closeness) to different individuals in the respective social network while undergoing functional MRI.Participants were always faster making judgments from their own POV compared to other POVs (self-projection effect) and for people who were personally closer to their adopted POV (self-reference effect). Brain activity at the medial prefrontal and anterior cingulate cortex in the self POV condition was found to be higher compared to all other conditions. Activity at the right temporoparietal junction and medial parietal cortex was found to distinguish between the personally related (self, significant- and non-significant others) and unrelated (famous-person) individuals within the social network. Regardless of the POV, the precuneus, anterior cingulate cortex, prefrontal cortex, and temporoparietal junction distinguished between relatively closer and distant people. Representational similarity analysis (RSA) implicated the left retrosplenial cortex as crucial for social distance processing across all POVs.


2020 ◽  
Author(s):  
Hayley Gilbertson ◽  
Lin Fang ◽  
Jeremy A. Andrzejewski ◽  
Joshua M. Carlson

AbstractThe error-related negativity (ERN) is a response-locked event-related potential, occurring approximately 50 ms following an erroneous response at frontocentral electrode sites. Source localization and functional magnetic resonance imaging (fMRI) research indicate that the ERN is likely generated by activity in the dorsal anterior cingulate cortex (dACC). The dACC is thought to be a part of a broader network of brain regions that collectively comprise an error-monitoring network. However, little is known about how intrinsic connectivity within the dACC-based error-monitoring network contributes to variability in ERN amplitude. The purpose of this study was to assess the relationship between dACC functional connectivity and ERN amplitude. In a sample of 53 highly trait-anxious individuals, the ERN was elicited in a flanker task and functional connectivity was assessed in a 10-minute resting-state fMRI scan. Results suggest that the strength of dACC seeded functional connectivity with the supplementary motor area is correlated with the ΔERN (i.e., incorrect – correct responses) amplitude such that greater ΔERN amplitude was accompanied by greater functional coupling between these regions. In addition to the dACC, exploratory analyses found that functional connectivity in the caudate, cerebellum, and a number of regions in the error-monitoring network were linked to variability in ΔERN amplitude. In sum, ERN amplitude appears to be related to the strength of functional connectivity between error-monitoring and motor control regions of the brain.


2018 ◽  
Vol 53 (1) ◽  
pp. 68-79 ◽  
Author(s):  
Hui Juan Chen ◽  
Li Zhang ◽  
Jun Ke ◽  
Rongfeng Qi ◽  
Qiang Xu ◽  
...  

Objective: The brain functional alterations at regional and network levels in post-traumatic stress disorder patients are still unclear. This study explored brain functional alterations at regional and network levels in post-traumatic stress disorder patients with resting-state functional magnetic resonance imaging and evaluated the relationship between brain function and clinical indices in post-traumatic stress disorder. Methods: Amplitude of low-frequency fluctuation and seed-based functional connectivity analyses were conducted among typhoon survivors with ( n = 27) and without post-traumatic stress disorder ( n = 33) and healthy controls ( n = 30) to assess the spontaneous brain activity and network-level brain function. Pearson correlation analyses were performed to examine the association of brain function with clinical symptom and social support. Results: Both the post-traumatic stress disorder group and the trauma-exposed control group showed decreased amplitude of low-frequency fluctuation in the dorsal anterior cingulate cortex relative to the healthy control group. The post-traumatic stress disorder group showed increased dorsal anterior cingulate cortex functional connectivity with the right paracentral lobule and bilateral precentral gyrus/postcentral gyrus relative to both control groups. Both traumatized groups exhibited decreased dorsal anterior cingulate cortex functional connectivity with the right hippocampus and left cerebellum relative to the healthy control group. More decreased dorsal anterior cingulate cortex functional connectivity with the right hippocampus was found in the post-traumatic stress disorder group. The Checklist-Civilian Version score positively correlated with functional connectivity between the dorsal anterior cingulate cortex and the right paracentral lobule as well as between the dorsal anterior cingulate cortex and the right precentral gyrus/postcentral gyrus. The social support was associated with functional connectivity between the dorsal anterior cingulate cortex and the bilateral precentral gyrus/postcentral gyrus as well as the dorsal anterior cingulate cortex and the left middle frontal gyrus. Conclusion: Trauma exposure may result in aberrant local and network-level functional connectivity in individuals with or without post-traumatic stress disorder. Altered amplitude of low-frequency fluctuation in the dorsal anterior cingulate cortex may be a predisposing risk factor for post-traumatic stress disorder development following trauma exposure. More prominent decreased dorsal anterior cingulate cortex functional connectivity with the right hippocampus might be specific in the post-traumatic stress disorder group. Improvement of social support might possibly be significant for post-traumatic stress disorder patients.


2019 ◽  
Vol 49 (08) ◽  
pp. 1365-1377 ◽  
Author(s):  
Selina A. Wolke ◽  
Mitul A. Mehta ◽  
Owen O'Daly ◽  
Fernando Zelaya ◽  
Nada Zahreddine ◽  
...  

AbstractBackgroundAberrations in reward and penalty processing are implicated in depression and putatively reflect altered dopamine signalling. This study exploits the advantages of a placebo-controlled design to examine how a novel D2antagonist with adjunctive antidepressant properties modifies activity in the brain's reward network in depression.MethodsWe recruited 43 medication-naïve subjects across the range of depression severity (Beck's Depression Inventory-II score range: 0–43), including healthy volunteers, as well as people meeting full-criteria for major depressive disorder. In a double-blind placebo-controlled cross-over design, all subjects received either placebo or lurasidone (20 mg) across two visits separated by 1 week. Functional magnetic resonance imaging with the Monetary Incentive Delay (MID) task assessed reward functions via neural responses during anticipation and receipt of gains and losses. Arterial spin labelling measured cerebral blood flow (CBF) at rest.ResultsLurasidone altered fronto-striatal activity during anticipation and outcome phases of the MID task. A significant three-way Medication-by-Depression severity-by-Outcome interaction emerged in the anterior cingulate cortex (ACC) after correction for multiple comparisons. Follow-up analyses revealed significantly higher ACC activation to losses in high-v.low depression participants in the placebo condition, with a normalisation by lurasidone. This effect could not be accounted for by shifts in resting CBF.ConclusionsLurasidone acutely normalises reward processing signals in individuals with depressive symptoms. Lurasidone's antidepressant effects may arise from reducing responses to penalty outcomes in individuals with depressive symptoms.


Sign in / Sign up

Export Citation Format

Share Document