scholarly journals Prognostic value of the micronucleus assay for clinical endpoints in neoadjuvant radiochemotherapy for rectal cancer

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Leif Hendrik Dröge ◽  
Steffen Hennies ◽  
Stephan Lorenzen ◽  
Lena-Christin Conradi ◽  
Henriette Quack ◽  
...  

Abstract Background The question whether lymphocyte radiosensitivity is representative of patients’ response to radiotherapy (RT) remains unsolved. We analyzed lymphocyte cytogenetic damage in patients who were homogeneously treated with preoperative radiochemotherapy (RCT) for rectal cancer within clinical trials. We tested for interindividual variation and consistent radiosensitivity after in-vivo and in-vitro irradiation, analyzed the effect of patients’ and RCT characteristics on cytogenetic damage, and tested for correlations with patients’ outcome in terms of tumor response, survival and treatment-related toxicity. Methods The cytokinesis-block micronucleus cytome (CBMNcyt) assay was performed on the peripheral blood lymphocytes (PBLCs) of 134 patients obtained before, during, at the end of RCT, and during the 2-year follow-up. A subset of PBLCs obtained before RCT was irradiated in-vitro with 3 Gy. RCT included 50.4 Gy of pelvic RT with 5-fluorouracil (5-FU) alone (n = 78) or 5-FU plus oxaliplatin (n = 56). The analyzed variables included patients’ age, gender, RT characteristics (planning target volume size [PTV size], RT technique), and chemotherapy characteristics (5-FU plasma levels, addition of oxaliplatin). Outcome was analyzed as tumor regression, patient survival, and acute and late toxicity. Results Cytogenetic damage increased significantly with the radiation dose and varied substantially between individuals. Women were more sensitive than men; no significant age-dependent differences were observed. There was a significant correlation between the cytogenetic damage after in-vitro irradiation and in-vivo RCT. We found a significant effect of the PTV size on the yields of cytogenetic damage after RCT, while the RT technique had no effect. Neither the addition of oxaliplatin nor the 5-FU levels influenced cytogenetic damage. We found no correlation between patient outcome and the cytogenetic damage. Conclusions We found consistent cytogenetic damage in lymphocytes after in-vivo RCT and in-vitro irradiation. Gender was confirmed as a well-known, and the PTV size was identified as a less well-known influencing variable on lymphocyte cytogenetic damage after partial-body irradiation. A consistent level of cytogenetic damage after in-vivo and in-vitro irradiation may indicate the importance of genetic factors for individual radiosensitivity. However, we found no evidence that in-vivo or in-vitro irradiation-induced cytogenetic damage is an adequate biomarker for the response to RCT in rectal cancer patients.

2021 ◽  
Author(s):  
Sanghyun Kim ◽  
Nolan Vale ◽  
Nikolaos Zacharakis ◽  
Sri Krishna ◽  
Zhiya Yu ◽  
...  

Abstract Adoptive cell therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from rare mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types. Here, we describe a library of T cell receptors (TCRs) that can target TP53 mutations shared among 7.3% of patients with solid cancers. These TCRs recognized tumor cells in a TP53 mutation- and human leucocyte antigen (HLA)-specific manner both in vitro and in vivo. Patients with chemorefractory epithelial cancers treated with ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) naturally reactive with mutant p53 experienced limited clinical responses (2 PRs/12 patients), and we detected low frequencies, exhausted phenotypes, and poor persistence of the infused mutant p53-reactive TILs. Alternatively, we treated one patient with a chemorefractory breast cancer with ACT by transducing autologous peripheral blood lymphocytes with an HLA-A*02-restricted anti-p53R175H TCR. The infused cells exhibited an improved immunophenotype and prolonged persistence compared to the TIL ACT and the patient experienced an objective tumor regression (-55%) that lasted 6 months. Collectively, these data demonstrate the feasibility of off-the-shelf TCR-engineered cell therapies targeting shared p53 neoantigens to treat human cancers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katherine E. Harris ◽  
Kyle J. Lorentsen ◽  
Harbani K. Malik-Chaudhry ◽  
Kaitlyn Loughlin ◽  
Harish Medlari Basappa ◽  
...  

AbstractThe use of recombinant interleukin-2 (IL-2) as a therapeutic protein has been limited by significant toxicities despite its demonstrated ability to induce durable tumor-regression in cancer patients. The adverse events and limited efficacy of IL-2 treatment are due to the preferential binding of IL-2 to cells that express the high-affinity, trimeric receptor, IL-2Rαβγ such as endothelial cells and T-regulatory cells, respectively. Here, we describe a novel bispecific heavy-chain only antibody which binds to and activates signaling through the heterodimeric IL-2Rβγ receptor complex that is expressed on resting T-cells and NK cells. By avoiding binding to IL-2Rα, this molecule circumvents the preferential T-reg activation of native IL-2, while maintaining the robust stimulatory effects on T-cells and NK-cells in vitro. In vivo studies in both mice and cynomolgus monkeys confirm the molecule’s in vivo biological activity, extended pharmacodynamics due to the Fc portion of the molecule, and enhanced safety profile. Together, these results demonstrate that the bispecific antibody is a safe and effective IL-2R agonist that harnesses the benefits of the IL-2 signaling pathway as a potential anti-cancer therapy.


2018 ◽  
Vol 13 (6) ◽  
pp. 1934578X1801300
Author(s):  
Jasmina Čakar ◽  
Naida Kadrić Lojo ◽  
Anja Haverić ◽  
Maida Hadžić ◽  
Lejla Lasić ◽  
...  

Satureja subspicata and S. horvatii are endemic species of the Balkan Peninsula and often used in traditional medicine in Bosnia and Herzegovina to treat different health conditions. We aimed to analyze the unevaluated apoptotic, genotoxic and cytotoxic effects of two Satureja species, as well as their content of phenolics that are mainly responsible for the plant's biological activity. Apoptotic and geno/cytotoxic activities of S. subspicata and S. horvatii were investigated in vitro in human lymphocyte culture and in vivo in mice. The content of the main phenolics in plant extracts was determined by ultra-high pressure liquid chromatography-MS-MS (UHPLC–MS/MS). Genotoxic and cytotoxic activities of Satureja extracts were evaluated in vitro by applying a cytokinesis-block micronucleus cytome assay in human lymphocyte culture and in vivo applying a mice reticulocytes micronucleus assay. SALSA RT-MLPA R011-C1 apoptosis assay was used for measuring the relative expression of 44 genes associated with the regulation of the apoptotic pathways in human lymphocyte cultures treated with different concentrations of two Satureja extracts. The first analysis of phenolic compounds in S. horvatii and S. subspicata determined by an UHPLC-MS/MS method revealed high levels of rosmarinic and caffeic acids. Minor genotoxic potential was determined in relation to the tested concentrations while no cytostatic and cytotoxic effects were revealed in vitro. However, when applied in concentrations of 200 mg/kg per os, aqueous extracts of two Satureja species significantly decreased frequency of reticulocytes micronuclei in treated mice against controls. Extracts of S. subspicata and S. horvatii in concentrations of 0.2 mg/mL, regardless of solvent used, downregulated pro-apoptotic and upregulated anti-apoptotic genes, showing anti-apoptotic activity. Our results indicate that the registered anti-genotoxic and anti-apoptotic activity is most likely related to the high level of phenolic acids (particularly rosmarinic and caffeic) in the tested extracts.


2002 ◽  
Vol 115 (15) ◽  
pp. 3207-3222 ◽  
Author(s):  
Yen-Yi Zhen ◽  
Thorsten Libotte ◽  
Martina Munck ◽  
Angelika A. Noegel ◽  
Elena Korenbaum

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Béatrice Clémenceau ◽  
Sandrine Valsesia-Wittmann ◽  
Anne-Catherine Jallas ◽  
Régine Vivien ◽  
Raphaël Rousseau ◽  
...  

The present work was designed to compare two mechanisms of cellular recognition based on Ab specificity: firstly, when the anti-HER2 mAb trastuzumab bridges target cells and cytotoxic lymphocytes armed with a Fc receptor (ADCC) and, secondly, when HER2 positive target cells are directly recognized by cytotoxic lymphocytes armed with a chimeric antigen receptor (CAR). To compare these two mechanisms, we used the same cellular effector (NK-92) and the same signaling domain (FcεRIγ). The NK-92 cytotoxic cell line was transfected with either a FcγRIIIa-FcεRIγ(NK-92CD16) or a trastuzumab-based scFv-FcεRIγchimeric receptor (NK-92CAR). In vitro, the cytotoxic activity against HER2 positive target cells after indirect recognition byNK-92CD16was always inferior to that observed after direct recognition byNK-92CAR. In contrast, and somehow unexpectedly, in vivo, adoptive transfer ofNK-92CD16+ trastuzumab but not ofNK-92CARinduced tumor regression. Analysis of the in vivo xenogeneic system suggested that the human CH2-CH3 IgG2 used as a spacer in our construct was able to interact with the FcR present at the cell surface of the few NSG-FcR+ remaining immune cells. This interaction, leading to blockage of theNK-92CARin the periphery of the engrafted tumor cells, stresses the critical role of the composition of the spacer domain.


2020 ◽  
Vol 15 (1) ◽  
pp. FNL38 ◽  
Author(s):  
Zarlascht Karmand ◽  
Hans-Peter Hartung ◽  
Oliver Neuhaus

Aim: To detect IFN β-1a-induced expression of brain-derived neurotrophic factor (BDNF) to undermine the hypothesis of IFN β-1a-associated neuroprotection in multiple sclerosis (MS). Methods: The influence of IFN β-1a on in vitro activated peripheral blood lymphocytes from healthy donors was tested. Proliferation analyses were made to detect T-cell growth. BDNF expression was measured by standard ELISA. To assess the influence of IFN β-1a on BDNF expression in vivo, BDNF serum levels of MS patients treated with IFN β-1a were compared with those of untreated patients. Results: IFN β-1a inhibited T-cell proliferation dose dependently. It induced BDNF expression at middle concentrations. MS patients treated with IFN β-1a exhibited significantly lower BDNF serum levels than untreated patients. Conclusion: IFN β-1a may promote neuroprotection by inducing BDNF expression, but its importance in vivo remains open.


2010 ◽  
Vol 62 (1) ◽  
pp. 63-74
Author(s):  
V. Bajic ◽  
Z. Stanimirovic ◽  
Jevrosima Stevanovic ◽  
Zorka Milicevic ◽  
Lada Zivkovic ◽  
...  

Premature centromere division (PCD) can be viewed as a manifestation of chromosome instability. In order to evaluate the ability of Paclitaxel (Ptx) and Cycloheximide (Cy) to induce PCD we used a cytokinesis block micronucleus assay (CBMN), fluorescent in situ hybridization (FISH), and the chromosome aberration (CA) assay in human peripheral blood lymphocytes. Results showed that Ptx can induce PCD alone or in combination with Cy. These findings call us to pay more attention to PCD as a parameter of genotoxicity in the pre-clinical research of mono and/or combinational therapies for cancer treatment.


1993 ◽  
Vol 178 (2) ◽  
pp. 743-747 ◽  
Author(s):  
L J Montaner ◽  
A G Doyle ◽  
M Collin ◽  
G Herbein ◽  
P Illei ◽  
...  

The mechanisms by which cellular immunity maintains the asymptomatic state after human immunodeficiency virus type 1 (HIV-1) infection are poorly understood. CD4+ T lymphocytes play a complex role in regulating anti-HIV effector pathways, including activation of macrophages, which are themselves implicated in clinical latency and pathogenesis of symptomatic acquired immune deficiency syndrome. We have found that a newly identified T helper type 2 lymphokine, interleukin 13 (IL-13), inhibits HIV-1ADA and Ba-L replication in primary tissue culture-derived macrophages but not in peripheral blood lymphocytes. Viral production in cells was measured by viral protein (p24) and reverse transcriptase levels, while entry was assessed by proviral DNA analysis at timed intervals after infection. Inhibition by IL-13 was dose and time dependent and not mediated through altered viral entry, reverse transcription, or viral release. IL-13 is therefore a candidate cytokine for the suppression of HIV infection within monocytes and macrophages in vivo.


Sign in / Sign up

Export Citation Format

Share Document