scholarly journals Modulation of chimeric antigen receptor surface expression by a small molecule switch

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Alexandre Juillerat ◽  
Diane Tkach ◽  
Brian W. Busser ◽  
Sonal Temburni ◽  
Julien Valton ◽  
...  
2016 ◽  
Author(s):  
Sarah A. Richman ◽  
Liang-Chuan Wang ◽  
Edmund K. Moon ◽  
Steven M. Albelda ◽  
Michael C. Milone

2020 ◽  
Vol 38 (4) ◽  
pp. 503-503
Author(s):  
Greta Giordano-Attianese ◽  
Pablo Gainza ◽  
Elise Gray-Gaillard ◽  
Elisabetta Cribioli ◽  
Sailan Shui ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3517-3517 ◽  
Author(s):  
Yasushi Kasahara ◽  
Changsu Shin ◽  
Sakiko Yoshida ◽  
Takayuki Takachi ◽  
Nobuhiro Kubo ◽  
...  

Abstract Genetic modification of T cells with an artificial tumor-targeting chimeric antigen receptor (CAR) is a new approach for adoptive cell therapy for cancer. Defining cell surface molecules that are both selectively expressed on cancer cells and can be safely targeted with T cells or NK cells is a significant challenge in this research field. NKp44 is a member of the natural cytotoxicity receptor (NCR) families and also known as NCR2. Expression of NKp44 is limited to activating NK cells, which leads to a marked increase in cytotoxicity against tumors. The receptor contains one extracellular immunoglobulin domain, type I transmembrane (TM) domain, and intracellular (IC) domain, and its surface expression seems to require binding of the TM domain to adaptor molecules of DAP12 accessory protein that contains ITAMs. The ligand for NKp44 is considered damage-associated molecular pattern molecules, which have been reported to be expressed by various types of cancer cells but not by healthy cells. Therefore, a wide range of cancer cells may be safely targeted if the ligand-binding domain of this receptor is used in a construction of a chimeric antigen receptor (CAR) as an antigen recognition site, instead of using single chain variable domains derived from monoclonal antibody. We created several NKp44-based CAR constructs, which shares the extracellular NKp44 IG domain as a ligand-binding domain. Surface expression levels and subsequent functional properties can differ among T cells or NK cells transduced with novel CARs with different structural characteristics. We thus tested whether swapping the domains other than the antigen-binding domain affected expression and function. The CAR genes were retrovirally transduced into human primary T cells according to a standard method. We also transduced human primary NK cells with NKp44-based CARs, by a previously reported method (Imai C, et al. Blood 2005), to compare the expression pattern of the CAR in NK cells with that in human T cells. Retroviral transfer of wild type NKp44 gene and a construct harboring IC(p44) both did not induce NKp44 surface expression (Fig 1A,B). By sharp contrast, primary NK cells were able to express the CAR protein on the cell surface after transfer of these two genes. Removal of the IC(p44) [EH(p44)-TM(p44)-IC(CD3z)] allowed slight surface expression in T cells (Fig1C). The replacement of TM(p44) with TM(CD8a) resulted in higher surface expression in T cells (Fig 1D). These observations indicated the presence of IC(p44) as well as TM(p44) in the CAR constructs hampered surface expression in T cells most likely due to the lack of DAP12 expression. In addition to TM replacement, replacement of EH(p44) with EH(CD8a) markedly increased surface expression of the CAR (Fig 1E). Similarly, we tested use of CD28 domains instead of CD8a. Surprisingly, as different from the case of CD8a, the construct EH(p44)-TM(CD28)-IC(CD3z) yielded highest surface expression among the all CAR constructs created in this study in T cells as well as in NK cells (Fig1F), while the replacement of EH(p44) of the abovementioned CAR with EH(CD28) resulted in marked reduction of the CAR expression (Fig 1G). We confirmed surface expression of NKp44 ligand with flow cytometric analysis using recombinant human NKp44 Fc chimera protein (R&D Systems, McKinley Place, Minneapolis, USA) on various tumor cell lines including myeloid leukemia (K562, THP-1, U937, KY821, HL60), T-cell leukemia (PEER, MOLT4, HSB2), Burkitt lymphoma (Raji), BCR-ABL-positive B-ALL (OP-1), osteosarcoma (MG63, NOS1, NOS2, NOS10, U2OS, SaOS2), rhabdomyosarcoma (Rh28, RMS-YM), neuroblastoma (SK-N-SH, NB1, NB16, IMR32), and cervical carcinoma (Hela). Function of the best construct [EH(p44)-TM(CD28)-IC(CD3z)] was further evaluated. Primary T cells transduced with this NKp44-based CAR exerted powerful cytotoxicity against tumor cell lines tested and produced interferon-g and granzyme B, while GFP-transduced T cells and control T cells transduced with truncated NKp44-based CAR did not. In conclusion, we have created a novel CAR based on the antigen-binding property derived from NKp44 receptor immunoglobulin domain. This CAR should be effective to redirect T cells as well as NK cells against various types of cancer including hematological malignancies. Figure 1 Schematic representation of gene constructs and their surface expression of NKp44-based CARs in human T cells and NK cells. Figure 1. Schematic representation of gene constructs and their surface expression of NKp44-based CARs in human T cells and NK cells. Disclosures Imai: Juno Therapeutics: Patents & Royalties.


Author(s):  
Yannick D. Muller ◽  
Duy P. Nguyen ◽  
Leonardo M.R. Ferreira ◽  
Patrick Ho ◽  
Caroline Raffin ◽  
...  

AbstractAnti-CD19 chimeric antigen receptor (CD19-CAR)-engineered T cells are approved therapeutics for malignancies. The impact of the hinge (HD) and transmembrane (TMD) domains between the extracellular antigen-targeting and the intracellular signaling modalities of CARs has not been systemically studied. Here, a series of CD19-CARs differing only by their HD (CD8/CD28/IgG4) and TMD (CD8/CD28) was generated. CARs containing a CD28-TMD, but not a CD8-TMD, formed heterodimers with the endogenous CD28 in human T cells, as shown by co-immunoprecipitation and CAR-dependent proliferation to anti-CD28 stimulation. This dimerization depended on polar amino-acids in the CD28-TMD. CD28-CAR heterodimerization was more efficient in CARs containing a CD8-HD or CD28-HD as compared to an IgG4-HD. CD28-CAR heterodimers did not respond to CD80 and CD86 stimulation but led to a significant reduction of CD28 cell-surface expression. These data unveil a new property of the CD28-TMD and suggest that TMDs can modulate CAR T-cell activities by engaging endogenous partners.Abstract Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 930-930
Author(s):  
Michael Hudecek ◽  
Thomas M Schmitt ◽  
Sivasubramanian Baskar ◽  
Wen-Chung Chang ◽  
David G Maloney ◽  
...  

Abstract Abstract 930 The orphan tyrosine kinase receptor ROR1 was previously identified as a highly expressed gene by expression profiling of B cell chronic lymphocytic leukemia (B-CLL), [Klein et al. J Exp Med 2001], and has subsequently been shown to be expressed on mantle cell lymphoma (MCL) and a subset of B cell acute lymphoblastic leukemias (B-ALL). ROR1 encodes a 105 kDa protein that contains Ig-like, cysteine rich, kringle, tyrosine kinase and proline rich domains and is expressed during embryonic development but is absent on normal adult tissues including non-malignant B cells. The function of ROR1 in normal and malignant cells is not known, although secreted Wnt proteins have been proposed as candidate ligands. Analysis of ROR1 protein expression using specific polyclonal antibodies revealed uniform, stable, and restricted cell surface expression on B-CLL, suggesting this molecule is a candidate for targeted immunotherapy of B cell malignancies [Baskar et al. Clin Cancer Res 2008]. We constructed a lentiviral vector that encodes a chimeric antigen receptor (CAR) consisting of single chain variable (scFV) fragments of the heavy and light chains of a murine monoclonal antibody specific for ROR1, linked to an IgG4 Fc domain, the T cell receptor CD3 zeta chain and a CD28 costimulatory domain. The specificity and function of the ROR1 CAR was compared with a similarly designed CAR specific for the CD20 molecule, which is expressed on both malignant and normal B cells, and is being targeted with gene-modified T cells in clinical trials. Primary human CD8+ T cells were transduced with the ROR1 and CD20-specific CARs respectively, and T cells expressing high levels of the receptors were sort-purified using an anti-Fc antibody. T cells that expressed either the ROR1-specific CAR or the CD20-specific CAR efficiently lysed primary B-CLL samples (5/5) obtained from patients with advanced disease, and also lysed a MCL cell line (JeKo-1), and a ROR1+ B-ALL cell line (BALL-1). ROR1-specific T cells did not recognize the myeloid leukemia cell line K562, but efficiently lysed K562 cells that had been transfected to express ROR1, confirming the specific recognition of ROR1 on target cells. Consistent with the expression pattern of the target molecules, T cells that expressed the CD20-specific CAR also efficiently lysed normal primary and EBV-transformed B cells, but T cells that expressed the ROR1-specific CAR did not recognize nonmalignant or EBV-transformed B cells. Activation of normal B cells by engagement of the B cell receptor or activation through CD40 induced B cell proliferation and upregulation of the CD80 and CD86 costimulatory molecules, but did not result in ROR1 surface expression by flow cytometry or recognition by T cells that expressed the ROR1-specific CAR. These results suggest that targeting ROR1 with gene-modified T cells may have advantages over targeting B cell-lineage restricted molecules such as CD19 and CD20 that are expressed on normal mature B cells. Studies to determine whether ROR1 is expressed during a stage of normal B cell development are in progress. ROR1 is highly conserved in non-human primates and this model may be suitable to determine potential toxicities of adoptive immunotherapy with ROR1-specific CAR expressing T cells. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 25 (9) ◽  
pp. 2176-2188 ◽  
Author(s):  
Aaron E. Foster ◽  
Aruna Mahendravada ◽  
Nicholas P. Shinners ◽  
Wei-Chun Chang ◽  
Jeannette Crisostomo ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yannick D. Muller ◽  
Duy P. Nguyen ◽  
Leonardo M. R. Ferreira ◽  
Patrick Ho ◽  
Caroline Raffin ◽  
...  

Anti-CD19 chimeric antigen receptor (CD19-CAR)-engineered T cells are approved therapeutics for malignancies. The impact of the hinge domain (HD) and the transmembrane domain (TMD) between the extracellular antigen-targeting CARs and the intracellular signaling modalities of CARs has not been systemically studied. In this study, a series of 19-CARs differing only by their HD (CD8, CD28, or IgG4) and TMD (CD8 or CD28) was generated. CARs containing a CD28-TMD, but not a CD8-TMD, formed heterodimers with the endogenous CD28 in human T cells, as shown by co-immunoprecipitation and CAR-dependent proliferation of anti-CD28 stimulation. This dimerization was dependent on polar amino acids in the CD28-TMD and was more efficient with CARs containing CD28 or CD8 HD than IgG4-HD. The CD28-CAR heterodimers did not respond to CD80 and CD86 stimulation but had a significantly reduced CD28 cell-surface expression. These data unveiled a fundamental difference between CD28-TMD and CD8-TMD and indicated that CD28-TMD can modulate CAR T-cell activities by engaging endogenous partners.


2020 ◽  
Vol 38 (4) ◽  
pp. 426-432 ◽  
Author(s):  
Greta Giordano-Attianese ◽  
Pablo Gainza ◽  
Elise Gray-Gaillard ◽  
Elisabetta Cribioli ◽  
Sailan Shui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document