scholarly journals Ultraviolet (IUV) and mass spectrometry (IMS) imaging for the deconvolution of microbial interactions

2018 ◽  
Vol 12 (S5) ◽  
Author(s):  
Víctor González-Menéndez ◽  
Germán Martínez ◽  
Rachel Serrano ◽  
Francisca Muñoz ◽  
Jesús Martín ◽  
...  
2016 ◽  
Author(s):  
Katherine B. Louie ◽  
Benjamin P. Bowen ◽  
Rebecca Lau ◽  
Trent R. Northen

Mass spectrometry imaging (MSI) has emerged as a powerful technique enabling spatially defined imaging of metabolites within microbial biofilms. Here, we extend this approach to enable differentiation of newly synthesized versus pre-existing metabolites across a co-culture. This is accomplished by MS imaging two soil microbes, Shewanella oneidensis MR1 and Pseudomonas stutzeri RCH2, that were administered heavy water (D2O) during growth on agar plates. For two species-specific diglyceride (DG) lipids, isotopic analysis was performed on each spectra collected across the co-culture to determine the relative amount of newly synthesized versus pre-existing lipid. Here, highest levels of new synthesis of RCH2 lipid was localized to border regions adjacent to S. oneidensis MR1, while the MR1 lipid showed highest levels in regions further from RCH2. Interestingly, regions of high lipid abundance did not correspond to the regions with highest new lipid biosynthesis. Given the simplicity and generality of using D2O as a stable isotopic probe combined with the accessibility of kMSI to a range of MSI instrumentation, this approach has broad application for improving our understanding of how microbial interactions influence metabolite biosynthesis.


2014 ◽  
Vol 31 (6) ◽  
pp. 739 ◽  
Author(s):  
Chao-Jen Shih ◽  
Pi-Yu Chen ◽  
Chih-Chuang Liaw ◽  
Ying-Mi Lai ◽  
Yu-Liang Yang

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 477
Author(s):  
Don D. Nguyen ◽  
Veronika Saharuka ◽  
Vitaly Kovalev ◽  
Lachlan Stuart ◽  
Massimo Del Prete ◽  
...  

Metabolite annotation from imaging mass spectrometry (imaging MS) data is a difficult undertaking that is extremely resource intensive. Here, we adapted METASPACE, cloud software for imaging MS metabolite annotation and data interpretation, to quickly annotate microbial specialized metabolites from high-resolution and high-mass accuracy imaging MS data. Compared with manual ion image and MS1 annotation, METASPACE is faster and, with the appropriate database, more accurate. We applied it to data from microbial colonies grown on agar containing 10 diverse bacterial species and showed that METASPACE was able to annotate 53 ions corresponding to 32 different microbial metabolites. This demonstrates METASPACE to be a useful tool to annotate the chemistry and metabolic exchange factors found in microbial interactions, thereby elucidating the functions of these molecules.


2019 ◽  
Vol 14 (1) ◽  
pp. 1934578X1901400 ◽  
Author(s):  
Cristopher A. Boya P. ◽  
Martin H. Christian ◽  
Hermógenes Fernández-Marín ◽  
Marcelino Gutiérrez

Microbes associated with fungus-growing ants represent a poorly explored source of natural products. In this study, we used mass spectrometry-based dereplication techniques for identifying a set of secondary metabolites produced during the microbial interaction between Streptomyces sp. (CB0028) and Escovopsis sp. (CBAcro424). Both microorganisms were isolated from the nest of the fungus-growing ant Acromyrmex echinatior. Through MALDI imaging and MS/MS molecular networking, we annotated the siderophores: desferrioxamine B (1), ferrioxamine B (2), ferrioxamine E (3) and the N-formylated peptide SCO-2138/SLI-2138 (4). MALDI imaging experiments suggest that siderophores occurred during the microbial interactions in the fungus-growing ants – microbes symbioses. This is the first report on the production of compounds 1-4 by bacteria associated with fungus-growing ants.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
David A. Hopwood

ABSTRACT The genomes of actinomycetes contain numerous gene clusters potentially able to encode the production of many antibiotics and other specialized metabolites that are not expressed during growth under typical laboratory conditions. Undoubtedly, this reflects the soil habitat of these organisms, which is highly complex physically, chemically, and biotically; the majority of the compounds that make up the specialized metabolome are therefore adaptive only under specific conditions. While there have been numerous previous reports of “waking up” the “sleeping” gene clusters, many involving genetic interventions or nutritional challenges, the role of competing microorganisms has been comparatively little studied. Now, Traxler et al. [M. F. Traxler, J. D. Watrous, T. Alexandrov, P. C. Dorrestein, and R. Kolter, mBio 4(4):e00459-13, 2013, doi:10.1128/mBio.00459-13] have used the recently described technique of microscale imaging mass spectrometry to analyze in detail the stimulation of specialized metabolite production by the model actinomycete Streptomyces coelicolor A3(2) by growth in proximity to other actinomycetes. The striking finding from these experiments was that growth of S. coelicolor close to each of the five other actinomycetes studied caused it to produce many specialized metabolites that were not made when it was grown in isolation and that the majority of the compounds were interaction specific, i.e., they occurred only in one of the five pairwise combinations, emphasizing the highly specific nature of the interactions. These observations contribute substantially to the increasing awareness of communication between microorganisms in complex natural communities, as well as auguring well for the discovery of useful specialized metabolites based on microbial interactions.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Author(s):  
K.K. Soni ◽  
D.B. Williams ◽  
J.M. Chabala ◽  
R. Levi-Setti ◽  
D.E. Newbury

In contrast to the inability of x-ray microanalysis to detect Li, secondary ion mass spectrometry (SIMS) generates a very strong Li+ signal. The latter’s potential was recently exploited by Williams et al. in the study of binary Al-Li alloys. The present study of Al-Li-Cu was done using the high resolution scanning ion microprobe (SIM) at the University of Chicago (UC). The UC SIM employs a 40 keV, ∼70 nm diameter Ga+ probe extracted from a liquid Ga source, which is scanned over areas smaller than 160×160 μm2 using a 512×512 raster. During this experiment, the sample was held at 2 × 10-8 torr.In the Al-Li-Cu system, two phases of major importance are T1 and T2, with nominal compositions of Al2LiCu and Al6Li3Cu respectively. In commercial alloys, T1 develops a plate-like structure with a thickness <∼2 nm and is therefore inaccessible to conventional microanalytical techniques. T2 is the equilibrium phase with apparent icosahedral symmetry and its presence is undesirable in industrial alloys.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


Sign in / Sign up

Export Citation Format

Share Document