scholarly journals Genetic analysis of osteopetrosis in Pakistani families identifies novel and known sequence variants

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chunyu Liu ◽  
Muhammad Ajmal ◽  
Zaineb Akram ◽  
Tariq Ghafoor ◽  
Muhammad Farhan ◽  
...  

AbstractOsteopetrosis is a genetically heterogenous, fatal bone disorder characterized by increased bone density. Globally, various genetic causes are reported for osteopetrosis with all forms of inheritance patterns. A precise molecular diagnosis is necessary for prognosis and for prescribing treatment paradigms in osteopetrosis. Here we report on thirteen individuals diagnosed with infantile malignant osteopetrosis coming from ten unrelated Pakistani families; nine of whom are consanguineous. We performed whole exome sequencing and Sanger sequencing in all families and identified homozygous variants in genes previously reported for autosomal recessive inheritance of osteopetrosis. All the identified variants are expected to affect the stability or length of gene products except one nonsynonymous missense variant. TCIRG1 was found as a candidate causal gene in majority of the families. We report six novel variants; four in TCIRG1 and one each in CLCN7 and OSTM1. Our combined findings will be helpful in molecular diagnosis and genetic counselling of patients with osteopetrosis particularly in populations with high consanguinity.

2021 ◽  
pp. mcs.a006130
Author(s):  
Ryan J Patrick ◽  
Jill M Weimer ◽  
Laura Davis-Keppen ◽  
Megan L Landsverk

Pathogenic variants in CKAP2L have previously been reported in Filippi Syndrome (FS), a rare autosomal recessive, craniodigital syndrome characterized by microcephaly, syndactyly, short stature, intellectual disability, and dysmorphic facial features. To date, fewer than ten patients with pathogenic variants in CKAP2L associated with FS have been reported. All of the previously reported probands have presumed loss-of-function variants (frameshift, canonical splice site, starting methionine) and all but one have been homozygous for a pathogenic variant. Here we describe two brothers who presented with microcephaly, micrognathia, syndactyly, dysmorphic features, and intellectual disability. Whole exome sequencing of the family identified a missense variant, c.2066G>A (p.Arg689His), in trans with a frameshift variant, c.1169_1173del (p.Ile390LysfsTer4), in CKAP2L. To our knowledge, these are the first patients with FS to be reported with a missense variant in CKAP2L and only the second family to be reported with two variants in trans.


2020 ◽  
Author(s):  
Pengfei Liang ◽  
Fengping Chen ◽  
Shujuan Wang ◽  
Qiong Li ◽  
Wei Li ◽  
...  

Abstract Background: Hereditary non-syndromic hearing loss (NSHL) has a high genetic heterogeneity with >152 genes identified as associated molecular causes. The present study aimed to detect the possible damaging variants of the deaf probands from six unrelated Chinese families.Methods: After excluding the mutations in the most common genes, GJB2 and SLC26A4, 12 probands with prelingual deafness and autosomal recessive inheritance were evaluated by whole-exome sequencing (WES). All the candidate variants were verified by Sanger sequencing in all patients and their parents.Results: Biallelic mutations were identified in all deaf patients. Among these six families, 10 potentially causative mutations, including 3 reported and 7 novel mutations, in 3 different deafness-associated autosomal recessive (DFNB) genes (MYO15A, COL11A2, and CDH23) were identified. The mutations in MYO15A were frequent with 7/10 candidate variants. Sanger sequencing confirmed that these mutations segregated with the hearing loss of each family.Conclusions: Next-generation sequencing (NGS) approach becomes more cost-effective and efficient when analyzing large-scale genes compared to the conventional polymerase chain reaction-based Sanger sequencing, which is often used to screen common deafness-related genes. The current findings further extend the mutation spectrum of hearing loss in the Chinese population, which has a positive significance for genetic counseling.


2020 ◽  
Vol 33 (4) ◽  
pp. 553-556
Author(s):  
Aman Ullah ◽  
Bibi Zubaida ◽  
Huma Arshad Cheema ◽  
Muhammad Naeem

AbstractBackgroundPompe disease (PD) is an autosomal recessive metabolic myopathy with an average incidence of one in 40,000 live births. It has a variable age of onset and can be diagnosed within the first 3 months. Heart involvement and muscle weakness are its primary manifestations.Case presentationWe describe two families affected by PD with two rare, novel variants. To date, pathogenic variants in acid α-glucosidase (GAA) alone have accounted for all cases of the disease. Both families were screened for pathogenic sequence variations. This study presents the implications of regulatory or modifier sequences in the disease pathogenesis for the first time. A homozygous missense p.Arg854Gln variant in family A and a single heterozygous variant (p.Asn925His) in family B were found to be segregating according to the disease phenotype. The variants were not detected in our in-house database comprising 50 whole-exome sequences of healthy individuals from a local unrelated Pakistani population. In silico analyses predicted that the variants would have deleterious effects on the protein structure.ConclusionsThe variants likely underlie the infantile-onset PD (IOPD) in these Pakistani families. The study expands the mutation spectrum of GAA associated with IOPD and highlights the insufficiency of screening the GAA coding sequence to determine the cause of IOPD. The work should be helpful in carrier identification, improving genetic counselling, and prenatal diagnosis.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amjad Khan ◽  
Muhammad Umair ◽  
Rania Abdulfattah Sharaf ◽  
Muhammad Ismail Khan ◽  
Amir Ullah ◽  
...  

AbstractCongenital hypothyroidism (CH) is one of the most common hereditary disorders affecting neonates worldwide. CH is a multifactorial complex disorder and can be caused by either environmental factors or genetic factors. We studied one Pakistani family with segregating mutations in CH inherited in an autosomal recessive manner. Using whole-exome sequencing (WES), we found a novel homozygous missense variant (c.2315A>G; p.Tyr772Cys) in the thyroid peroxidase (TPO) gene. Different bioinformatics prediction tools and Sanger sequencing were performed to verify the identified variant. Our findings highlight the importance of this gene in causing CH and mild-intellectual disability (ID) in two affected brothers. WES is a convenient and useful tool for the clinical diagnosis of CH and other associated disorders.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4151-4151
Author(s):  
Claudia Lorena Buitrago ◽  
Augusto Rendon ◽  
Ernest Turro ◽  
Yupu Liang ◽  
Ilenia Simeoni ◽  
...  

Abstract # Authors contributed equally to this work. ~ Currently at Genomics England Ltd, London, United Kingdom Next generation sequencing is transforming our understanding of human genetic variation and is becoming a routine part of human genetic analysis. The identification of millions of new variants, which are mainly rare and assessing their implications for human health presents new challenges to researchers and clinicians. We have analyzed missense variants in the ITGB2A and ITGB3 genes obtained from whole exome and whole genome sequencing (WES & WGS) data from 5 databases: The Human Genome Mutation Database, the 1000 Genomes project, the UK10K Whole Exome Sequencing project, the UK10K Whole Genome Sequencing project, and The National Heart, Lung and Blood Institute Exome Sequencing Project. Together, these encompass variants of the platelet αIIbβ3 integrin receptor from ~32,000 alleles derived from 16,108 individuals. We identified 111 missense variants that have previously been associated with Glanzmann thrombasthenia (GT), 20 variants associated with alloimmune thrombocytopenia, and 5 variants associated with aniso/macrothrombocytopenia. None of the GT variants were found in the last four databases, indicating that they have minor allele frequencies (MAF) less than ~0.01%, attesting to both their rarity and the likelihood that they entered the population within the last ~2,500 years. We also identified 114 novel missense variants in ITGB2A affecting ~11% of the amino acids and 68 novel missense variants in ITGB3 affecting ~9% of the amino acids. 96% of the novel variants had MAF <0.1%, indicating their rarity. Based on sequence conservation, MAF, and/or location of the substituted residue on a complete model of αIIbβ3 that suggested a possible effect on protein folding, we selected three novel variants (αIIb P943A and P176H, and β3 C547G) that affect amino acids previously associated with GT for expression in HEK 293 cells. Both αIIb P176H and β3 C547G severely affected αIIbβ3 expression, whereas αIIb P943A had only a partial effect on expression and no effect on DTT-induced fibrinogen binding. We were not surprised that the latter variant did not have a severe effect on expression or function because it has an MAF (0.46%) that is much higher than the MAFs of the other GT-causing variants. To estimate the percentage of the 114 novel identified variants that are likely to be deleterious we used 3 different algorithms, CADD, Polyphen 2-HDVI, and SIFT. The algorithms showed moderate concordance in their rankings of the likelihood that a variant is deleterious. To compare their predictive powers, we performed receiver operating characteristic (ROC) analysis based on their ability to discriminate confirmed GT missense variants (positive controls) from alloantigens (negative controls); the area under the curve (AUC) values were 0.91, 0.88, and 0.90, respectively. At cutoff values that achieved greater than 95% sensitivity for each algorithm: 1) the specificity values were 75%, 65%, and 60%, and 2) the percentages of novel αIIb+β3 missense variants predicted to be deleterious were 43%, 56%, and 58%. Polyphen 2-HDVI and SIFT identified αIIb P176H and β3 C547G as highly likely to be deleterious and αIIb P943A as much less likely to be deleterious, whereas CADD did not differentiate them in the same way. We conclude that ~1.1% of individuals in the populations studied carry at least one missense variant in αIIb or β3 and that 0.6% carry a variant that might be deleterious and therefore may result in a hemorrhagic GT-like phenotype. The rarity of almost all of the novel missense variants identified indicates that they entered the population recently. Despite having detailed knowledge of the structure and function of αIIbβ3, it is difficult to predict with certainty the impact of any single missense variant. This will pose serious challenges as more individuals undergo WES and WGS; we anticipate that linkage to health record data, as will happen for the UK 100,000 Genomes project, will aid clinical interpretation. Finally, “hypomorphic” gene variants that produce only a partial decrease in expression, such as αIIb P943A, may contribute to the wide variation in αIIbβ3 surface expression observed in the healthy population. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Amjad Khan ◽  
Xiao Bai ◽  
Muhammad Umair ◽  
Shirui Han ◽  
Xiaerbati Habulieti ◽  
...  

Retinitis pigmentosa (RP) clinically and genetically heterogeneous group of inherited retinal disorders (IRD) that result in retinal degeneration. This study aimed to identify the genetic findings of patients with autosomal recessive retinitis pigmentosa (arRP). Whole exome sequencing (WES) was performed in two unrelated Pakistani families underlying arRP. Data analysis and mutation screening was performed for all the known RP genes following bi-directional Sanger sequencing to determine whether any of the candidate variants co-segregated with the disease phenotype in the families. WES data analysis revealed a novel homozygous missense variant (c.1274T&gt;C) in the in Tubby like Protein 1 (TULP1 NM_003322.6) gene in family 1 and a novel homozygous frameshift variant (c.351delC) in the retinoid isomerohydrolase 65 (RPE65 NM_000329.3) gene in family 2. The identified variants perfectly co-segregated with the disease phenotype within the families. Our results strongly suggest that mutations in TULP1 and RPE65 are responsible for the retinal phenotype in the affected individuals. These mutations will increase the mutation spectrum of these genes; furthermore, it will enhance our knowledge and understanding of the underlying molecular mechanisms of retinitis pigmentosa.


2020 ◽  
Author(s):  
somayeh khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background: Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods.Methods: This study was a report on two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results: The implementation of WES to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) and its related variants was reported in the present study. Two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 were correspondingly identified and then segregations were confirmed using Sanger sequencing. According to online prediction tools, both identified variants seemed to have damaging effects.Conclusion: This study further supported the effectiveness of WES for genetic diagnosis of ARNSHL as a first approach.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Yue Shen ◽  
Hao Wang ◽  
Zhimin Liu ◽  
Minna Luo ◽  
Siyu Ma ◽  
...  

Abstract Background Joubert syndrome (OMIM 213300) is an autosomal recessive disorder with gene heterogeneity. Causal genes and their variants have been identified by sequencing or other technologies for Joubert syndrome subtypes. Case presentation A two-year-old boy was diagnosed with Joubert syndrome by global development delay and molar tooth sign of mid-brain. Whole exome sequencing was performed to detect the causative gene variants in this individual, and the candidate pathogenic variants were verified by Sanger sequencing. We identified two pathogenic variants (NM_006346.2: c.1147delC and c.1054A > G) of PIBF1 in this Joubert syndrome individual, which is consistent with the mode of autosomal recessive inheritance. Conclusion In this study, we identified two novel pathogenic variants in PIBF1 in a Joubert syndrome individual using whole exome sequencing, thereby expanding the PIBF1 pathogenic variant spectrum of Joubert syndrome.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Amjad Khan ◽  
Rongrong Wang ◽  
Shirui Han ◽  
Muhammad Umair ◽  
Safdar Abbas ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are large group of heterogeneous genetic diseases, having a hallmark feature of muscle weakness. Pathogenic mutations in the gene encoding the giant skeletal muscle protein titin (TTN) are associated with several muscle disorders, including cardiomyopathy, recessive congenital myopathies and limb-girdle muscular dystrophy (LGMD) type10. The phenotypic spectrum of titinopathies is expanding, as next generation sequencing (NGS) technology makes screening of this large gene possible. Aim This study aimed to identify the pathogenic variant in a consanguineous Pakistani family with autosomal recessive LGMD type 10. Methods DNA from peripheral blood samples were obtained, whole exome sequencing (WES) was performed and several molecular and bioinformatics analysis were conducted to identify the pathogenic variant. TTN coding and near coding regions were further amplified using PCR and sequenced via Sanger sequencing. Results Whole exome sequencing analysis revealed a novel homozygous missense variant (c.98807G > A; p.Arg32936His) in the TTN gene in the index patients. No heterozygous individuals in the family presented LGMD features. The variant p.Arg32936His leads to a substitution of the arginine amino acid at position 32,936 into histidine possibly causing LGMD type 10. Conclusion We identified a homozygous missense variant in TTN, which likely explains LGMD type 10 in this family in line with similar previously reported data. Our study concludes that WES is a successful molecular diagnostic tool to identify pathogenic variants in large genes such as TTN in highly inbred population.


Sign in / Sign up

Export Citation Format

Share Document