scholarly journals Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Dongha Kim ◽  
Keun Il Kim ◽  
Sung Hee Baek

AbstractLysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1058 ◽  
Author(s):  
Gener ◽  
Rafael ◽  
Seras-Franzoso ◽  
Perez ◽  
Pindado ◽  
...  

Therapeutic resistance seen in aggressive forms of breast cancer remains challenging for current treatments. More than half of the patients suffer from a disease relapse, most of them with distant metastases. Cancer maintenance, resistance to therapy, and metastatic disease seem to be sustained by the presence of cancer stem cells (CSC) within a tumor. The difficulty in targeting this subpopulation derives from their dynamic interconversion process, where CSC can differentiate to non-CSC, which in turn de-differentiate into cells with CSC properties. Using fluorescent CSC models driven by the expression of ALDH1A 1(aldehyde dehydrogenase 1A1), we confirmed this dynamic phenotypic change in MDA-MB-231 breast cancer cells and to identify Serine/Threonine Kinase 2 (AKT2) as an important player in the process. To confirm the central role of AKT2, we silenced AKT2 expression via small interfering RNA and using a chemical inhibitor (CCT128930), in both CSC and non-CSC from different cancer cell lines. Our results revealed that AKT2 inhibition effectively prevents non-CSC reversion through mesenchymal to epithelial transition, reducing invasion and colony formation ability of both, non-CSC and CSC. Further, AKT2 inhibition reduced CSC survival in low attachment conditions. Interestingly, in orthotopic tumor mouse models, high expression levels of AKT2 were detected in circulating tumor cells (CTC). These findings suggest AKT2 as a promising target for future anti-cancer therapies at three important levels: (i) Epithelial-to-mesenchymal transition (EMT) reversion and maintenance of CSC subpopulation in primary tumors, (ii) reduction of CTC and the likelihood of metastatic spread, and (iii) prevention of tumor recurrence through inhibition of CSC tumorigenic and metastatic potential.


Gut ◽  
2018 ◽  
Vol 68 (3) ◽  
pp. 547-561 ◽  
Author(s):  
Mirjam B Zeisel ◽  
Punita Dhawan ◽  
Thomas F Baumert

Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV—one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.


2020 ◽  
Vol 48 (16) ◽  
pp. 8943-8958 ◽  
Author(s):  
Antonio Pezone ◽  
Maria Letizia Taddei ◽  
Alfonso Tramontano ◽  
Jacopo Dolcini ◽  
Francesca Ludovica Boffo ◽  
...  

Abstract The epithelial-to-mesenchymal transition (EMT) is a complex transcriptional program induced by transforming growth factor β1 (TGF-β1). Histone lysine-specific demethylase 1 (LSD1) has been recognized as a key mediator of EMT in cancer cells, but the precise mechanism that underlies the activation and repression of EMT genes still remains elusive. Here, we characterized the early events induced by TGF-β1 during EMT initiation and establishment. TGF-β1 triggered, 30–90 min post-treatment, a nuclear oxidative wave throughout the genome, documented by confocal microscopy and mass spectrometry, mediated by LSD1. LSD1 was recruited with phosphorylated SMAD2/3 to the promoters of prototypic genes activated and repressed by TGF-β1. After 90 min, phospho-SMAD2/3 downregulation reduced the complex and LSD1 was then recruited with the newly synthesized SNAI1 and repressors, NCoR1 and HDAC3, to the promoters of TGF-β1-repressed genes such as the Wnt soluble inhibitor factor 1 gene (WIF1), a change that induced a late oxidative burst. However, TGF-β1 early (90 min) repression of transcription also required synchronous signaling by reactive oxygen species and the stress-activated kinase c-Jun N-terminal kinase. These data elucidate the early events elicited by TGF-β1 and the priming role of DNA oxidation that marks TGF-β1-induced and -repressed genes involved in the EMT.


2013 ◽  
Author(s):  
Jason I. Herschkowitz ◽  
Cristian Coarfa ◽  
Aleix Prat ◽  
Michael J. Toneff ◽  
Katherine A. Hoadley ◽  
...  

Author(s):  
Marcin Nizioł ◽  
Anna Pryczynicz

Tensins belong to the family of adhesion proteins which form focal adhesions serving as a bridge between the extracellular matrix and intracellular actin skeleton. The tensin family consists of four members (tensin-1 to -4) which are widely expressed in normal and cancerous tissues. The presence of Src homology 2 and phosphotyrosine binding domains is a unique feature of tensins which enables them to interact with tyrosine-phosphorylated proteins in PI3K/Akt and β-integrin/FAK signaling pathways. The tensin-mediated signaling pathway regulates physiological processes including cell motility and cytoskeleton integrity. The expression of tensins varies among cancers. Several papers report tensins as tumor suppressive proteins, whereas tensins may promote epithelial to mesenchymal transition and cancer cell metastasis. Recent findings and further research on tensins as therapeutic targets in cancers may contribute to identifying effective anti-cancer therapy. In this review we focus on the role of tensins in normal and cancer cells. We discuss potential mechanism(s) involved in carcinogenesis.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
María Inés Pérez Millán ◽  
Michelle L Brinkmeier ◽  
Amanda H Mortensen ◽  
Sally A Camper

Mutations in PROP1 are the most common cause of hypopituitarism in humans; therefore, unraveling its mechanism of action is highly relevant from a therapeutic perspective. Our current understanding of the role of PROP1 in the pituitary gland is limited to the repression and activation of the pituitary transcription factor genes Hesx1 and Pou1f1, respectively. To elucidate the comprehensive PROP1-dependent gene regulatory network, we conducted genome-wide analysis of PROP1 DNA binding and effects on gene expression in mutant mice, mouse isolated stem cells and engineered mouse cell lines. We determined that PROP1 is essential for stimulating stem cells to undergo an epithelial to mesenchymal transition-like process necessary for cell migration and differentiation. Genomic profiling reveals that PROP1 binds to genes expressed in epithelial cells like Claudin 23, and to EMT inducer genes like Zeb2, Notch2 and Gli2. Zeb2 activation appears to be a key step in the EMT process. Our findings identify PROP1 as a central transcriptional component of pituitary stem cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document