scholarly journals Lung macrophages drive mucus production and steroid-resistant inflammation in chronic bronchitis

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kristina Andelid ◽  
Karolina Öst ◽  
Anders Andersson ◽  
Esha Mohamed ◽  
Zala Jevnikar ◽  
...  

Abstract Background Patients with chronic obstructive pulmonary disease (COPD) frequently suffer from chronic bronchitis (CB) and display steroid-resistant inflammation with increased sputum neutrophils and macrophages. Recently, a causal link between mucus hyper-concentration and disease progression of CB has been suggested. Methods In this study, we have evaluated the steroid sensitivity of purified, patient-derived sputum and alveolar macrophages and used a novel mechanistic cross-talk assay to examine how macrophages and bronchial epithelial cells cross-talk to regulate MUC5B production. Results We demonstrate that sputum plug macrophages isolated from COPD patients with chronic bronchitis (COPD/CB) are chronically activated and only partially respond to ex vivo corticosteroid treatment compared to alveolar macrophages isolated from lung resections. Further, we show that pseudo-stratified bronchial epithelial cells grown in air–liquid-interface are inert to direct bacterial lipopolysaccharide stimulation and that macrophages are able to relay this signal and activate the CREB/AP-1 transcription factor complex and subsequent MUC5B expression in epithelial cells through a soluble mediator. Using recombinant protein and neutralizing antibodies, we identified a key role for TNFα in this cross-talk. Conclusions For the first time, we describe ex vivo pharmacology in purified human sputum macrophages isolated from chronic bronchitis COPD patients and identify a possible basis for the steroid resistance frequently seen in this population. Our data pinpoint a critical role for chronically activated sputum macrophages in perpetuating TNFα-dependent signals driving mucus hyper-production. Targeting the chronically activated mucus plug macrophage phenotype and interfering with aberrant macrophage-epithelial cross-talk may provide a novel strategy to resolve chronic inflammatory lung disease.

2006 ◽  
Vol 28 (3) ◽  
pp. 486-495 ◽  
Author(s):  
S. Hodge ◽  
G. Hodge ◽  
S. Brozyna ◽  
H. Jersmann ◽  
M. Holmes ◽  
...  

2019 ◽  
Vol 18 (5) ◽  
pp. 892-908 ◽  
Author(s):  
Laura M. Palma Medina ◽  
Ann-Kristin Becker ◽  
Stephan Michalik ◽  
Harita Yedavally ◽  
Elisa J.M. Raineri ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Giulia Anzalone ◽  
Giuseppe Arcoleo ◽  
Fabio Bucchieri ◽  
Angela M. Montalbano ◽  
Roberto Marchese ◽  
...  

Abstract Cigarette smoke is a risk factor for COPD and lung cancer. In cancer, epigenetic modifications affect the expression of Enhancer of Zester Homolog 2 (EZH2), and silenced disabled homolog 2 interacting protein gene (DAB2IP) (onco-suppressor gene) by Histone H3 tri-methylation in lysine 27 (H3K27me3). In“ex vivo”studies, we assessed EZH2, H3K27me3 and DAB2IP immunoreactivity in bronchial epithelial cells from COPD patients (smokers, ex-smokers), Smoker and control subjects. In“in vitro” experiments we studied the effect of cigarette smoke extract (CSE) on EZH2/H3K27me3/DAB2IP expression, apoptosis, invasiveness, and vimentin expression in 16HBE, primary cells, and lung cancer cell lines (A549) long-term exposed to CSE. Finally, in “in vitro”studies, we tested the effect of GSK343 (selective inhibitor of EZH2). EZH2 and H3K27me3 expression was higher, while DAB2IP was lower levels, in bronchial epithelium from COPD and Smokers than in Controls. CSE increased EZH2, H3K27me3 expression and decreased DAB2IP, cell apoptosis and invasiveness in epithelial cells. GSK343 restored the effects of CSE. Cigarette smoke affects EZH2 expression, and reduced DAB2IP via H3K27me3 in COPD patients. The molecular mechanisms associated with EZH2 expression, generate a dysregulation of cell apoptosis, mesenchymal transition, and cell invasiveness in bronchial epithelial cells, encouraging the progression of airway inflammation toward lung cancer in COPD patients.


Author(s):  
Giulia Anzalone ◽  
Giuseppe Arcoleo ◽  
Angela Marina Montalbano ◽  
Rosalia Gagliardo ◽  
Fabio Bucchieri ◽  
...  

2016 ◽  
Vol 25 (140) ◽  
pp. 158-169 ◽  
Author(s):  
Ania Carsin ◽  
Julie Mazenq ◽  
Alexandra Ilstad ◽  
Jean-Christophe Dubus ◽  
Pascal Chanez ◽  
...  

Bronchial epithelium is a key element of the respiratory airways. It constitutes the interface between the environment and the host. It is a physical barrier with many chemical and immunological properties. The bronchial epithelium is abnormal in asthma, even in children. It represents a key component promoting airway inflammation and remodelling that can lead to chronic symptoms. In this review, we present an overview of bronchial epithelium and how to study it, with a specific focus on children. We report physical, chemical and immunological properties fromex vivoandin vitrostudies. The responses to various deleterious agents, such as viruses or allergens, may lead to persistent abnormalities orchestrated by bronchial epithelial cells. As epithelium dysfunctions occur early in asthma, reprogramming the epithelium may represent an ambitious goal to induce asthma remission in children.


2021 ◽  
Vol 22 (19) ◽  
pp. 10703
Author(s):  
Angela Marina Montalbano ◽  
Giuseppina Chiappara ◽  
Giusy Daniela Albano ◽  
Maria Ferraro ◽  
Caterina Di Sano ◽  
...  

The role of PAR-1 expression and activation was described in epithelial cells from the central and distal airways of COPD patients using an ex vivo/in vitro model. PAR-1 immunoreactivity was studied in epithelial cells from surgical specimens of the central and distal airways of COPD patients and healthy control (HC). Furthermore, PAR-1 expression and activation were measured in both the human bronchial epithelial cell line (16HBE) and normal human bronchial epithelial cells (NHBEs) exposed to cigarette smoke extract (CSE) (10%) or thrombin. Finally, cell proliferation, apoptosis, and IL-8 release were detected in stimulated NHBEs. We identified higher levels of PAR-1 expression/activation in epithelial cells from the central airways of COPD patients than in HC. Active PAR-1 increased in epithelial cells from central and distal airways of COPD, with higher levels in COPD smokers (correlated with pack-years) than in COPD ex-smokers. 16HBE and NHBEs exposed to CSE or thrombin showed increased levels of active PAR-1 (localized in the cytoplasm) than baseline conditions, while NHBEs treated with thrombin or CSE showed increased levels of IL-8 proteins, with an additional effect when used in combination. Smoking habits generate the upregulation of PAR-1 expression/activation in airway epithelial cells, and promoting IL-8 release might affect the recruitment of infiltrating cells in the airways of COPD patients.


Sign in / Sign up

Export Citation Format

Share Document