scholarly journals Loss of PR55α promotes proliferation and metastasis by activating MAPK/AKT signaling in hepatocellular carcinoma

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
JiangSheng Zhao ◽  
GuoFeng Chen ◽  
Jingqi Li ◽  
Shiqi Liu ◽  
Quan Jin ◽  
...  

Abstract Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.

2021 ◽  
Author(s):  
Zhao JiangSheng ◽  
Chen GuoFeng ◽  
Li JingQi ◽  
Liu ShiQi ◽  
Jin Quan ◽  
...  

Abstract Background: PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. Methods: PR55α expressions in HCC tissues and paired healthy liver samples were detected using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing.Results: PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples and was indicative of poorer prognosis. Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2.Conclusion: This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


2021 ◽  
Author(s):  
Zhao JiangSheng ◽  
Chen GuoFeng ◽  
Li JingQi ◽  
Liu ShiQi ◽  
Jin Quan ◽  
...  

Abstract Background: PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC.Methods: PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing.Results: PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P=0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2.Conclusion: This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Weidan Ji ◽  
Zhangxiao Peng ◽  
Bin Sun ◽  
Lei Chen ◽  
Qin Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is a malignant cancer with rapid proliferation and high metastasis ability. To explore the crucial genes that maintain the aggressive behaviors of cancer cells is very important for clinical gene therapy of HCC. LpCat1 was reported to be highly expressed and exert pro-tumorigenic effect in a variety of cancers, including HCC. However, its detailed molecular mechanism remained unclear. In this study, we confirmed that LpCat1 was up-regulated in HCC tissues and cancer cell lines. The overexpressed LpCat1 promoted the proliferation, migration and invasion of HCC cells, and accelerated cell cycle progression, while knocking down LpCat1 significantly inhibited cell proliferation, migration and invasion in vitro and in vivo, and arrested HCC cells at G0/G1 phase. Moreover, we proved for the first time that LpCat1 directly interacted with STAT1 which was generally recognized as a tumor suppressor in HCC. High levels of LpCat1 in HCC could inhibit STAT1 expression, up-regulate CyclinD1, CyclinE, CDK4 and MMP-9, and decrease p27kip1 to promote cancer progression. Conversely, down-regulation of LpCat1 would cause the opposite changes to repress the viability and motility of HCC cells. Consequently, we concluded that LpCat1 was a contributor to progression and metastasis of HCC by interacting with STAT1.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dandan Li ◽  
Jiawei Zhang ◽  
Jing Yang ◽  
Jie Wang ◽  
Runling Zhang ◽  
...  

AbstractCircRNA mitochondrial tRNA translation optimization 1 (circMTO1) functions as a tumor suppressor usually and is related to the progression of many tumors, including hepatocellular carcinoma (HCC). CircMTO1 is downregulated in HCC as compared to adjacent nontumor tissue, which may suppress the HCC progression by certain signal pathways. However, the underlying signal pathway remains largely unknown. The interactions between circMTO1 and miR-541-5p were predicted through bioinformatics analysis and verified using pull-down and dual-luciferase reporter assays. CCK-8, transwell, and apoptosis assays were performed to determine the effect of miR-541-5p on HCC progression. Using bioinformatic analysis, dual-luciferase reporter assay, RT-qPCR, and western blot, ZIC1 was found to be the downstream target gene of miR-541-5p. The regulatory mechanisms of circMTO1, miR-541-5p, and ZIC1 were investigated using in vitro and in vivo rescue experiments. The results depicted that silencing circMTO1 or upregulating miR-541-5p expression facilitated HCC cell proliferation, migration, and invasion and inhibited apoptosis. CircMTO1 silencing upregulated the expression of downstream ZIC1 regulators of the Wnt/β-catenin pathway markers, β-catenin, cyclin D1, c-myc, and the mesenchymal markers N-cadherin, Vimentin, and MMP2, while the epithelial marker E-cadherin was downregulated. MiR-541-5p knockdown had the opposite effect and reversed the effect of circMTO1 silencing on the regulation of downstream ZIC1 regulators. Intratumoral injection of miR-541-5p inhibitor suppressed tumor growth and reversed the effect of circMTO1 silencing on the promotion of tumor growth in HCC. These findings indicated that circMTO1 suppressed HCC progression via the circMTO1/ miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling and epithelial-to-mesenchymal transition, making it a novel therapeutic target.


2021 ◽  
Author(s):  
DengYong Zhang ◽  
FangFang Chen ◽  
ShuoShuo Ma ◽  
YongChun Zhou ◽  
Wanliang Sun ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) processes in multi-steps which involves the sophisticated interactions of genetics, epigenetics, and transcriptional changes. According to before investigations, methyltransferase-like 3 (METTL3)-mediated m6A modification regulates the development of various cancers by regulating gene stability. However, the studies focusing on miRNA’s regulatory effect of N6-methyladenosine (m6A) modification on HCC progression are still limited. Methods: Immunochemistry (IHC) staining detected the histopathological changes in the tumor tissues. Cell Counting Kit-8 (CCK-8), clone formation, and transwell assay investigated the changes in cancer cell proliferation, invasion, and migration. The RNA m6A level was confirmed by methylated RNA immunoprecipitation. The RNA stability assay indicated the half-life (t1/2) of RNA in HCC cells. The prognosis of the indicated patients’ cohort was analyzed using the cancer genome atlas (TCGA) datasets. Luciferase report analysis was used to study the potential binding between microRNA (miRNA) and mRNA. A mice tumor transplant model was further established to study the changes in tumor progression. Results: Follistatin-like 5 (FSTL5) was found to be significantly downregulated in HCC, and it inhibited the further progression of HCC. The RNA stability analysis indicated that the mRNA t1/2 gene of HCC cells was shortened. Besides, METTL3 reduced the stability of FSTL5 mRNA in a m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that the downregulated METTL3 inhibited the HCC progression by up-regulating FSTL5 in vitro and in vivo. Luciferase report analysis confirmed that miR-186-5p directly targeted the METTL3. Additionally, miR-186-5p inhibited the proliferation, migration, and invasion of HCC cells by downregulating METTL3. We identified that miR-186-5p prevented the HCC progression by targeting METTL3 to regulate m6A-mediated FSTL5 stabilization. Conclusions: The miR-186-5p/METTL3/YTHDF2/FSTL5 axis perhaps point out a new direction for the targeted therapy of HCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ke-ji Chen ◽  
Ying Hou ◽  
Kui Wang ◽  
Jun Li ◽  
Yong Xia ◽  
...  

Let-7 family microRNAs have been reported to be downregulated in human hepatocellular carcinoma in comparison with normal hepatic tissues. Among them, let-7g was identified as the lowest expression using real-time RT-PCR. However, the mechanism by which let-7g works in hepatocellular carcinoma remains unknown. Here, in our present study, we have had let-7g reexpressedin vitroin hepatocellular carcinoma cell lines MHCC97-H and HCCLM3 via transfection. The proliferation after reexpression of let-7g was assayed using MTT method; the migration and invasion after restoration were detected by wound-healing and Transwell assay, respectively. We found using Western-blotting that let-7g can regulate epithelial-mesenchymal transition (EMT) by downregulating K-Ras and HMGA2A after reexpresssion. Xenografted nude mice were used to observe whether or not reexpression of let-7g could have potential therapeutic ability.In vivo, to observe the association with let-7g expression and overall prognosis, 40 paired cases of hepatocellular carcinoma were analyzed using in situ hybridization (ISH). It was found that reexpression of let-7g can inhibit the proliferation, migration, and invasion significantly, and that low expression of let-7g was significantly associated with poorer overall survival. Taken together, let-7g could be used as a promising therapeutic agentin vivoin the treatment of hepatocellular carcinoma at the earlier stage.


Author(s):  
Fenrong Chen ◽  
Yan Wang ◽  
Yan Cheng ◽  
Haitao Shi ◽  
Hong Li ◽  
...  

Hepatocellular carcinoma (HCC) is a considerable threat to human life, and patients with HCC are usually diagnosed in the later stages. Although treatment for HCC has recently advanced rapidly, novel targets for HCC are still desperately needed, especially for precision medicine. Here, we identified an HCC enriched long non-coding RNA, AC006262.5, that promoted the proliferation, migration, and invasion of HCC both in vitro and in vivo. In addition, our results revealed that AC006262.5 bound to and regulated miR-7855-5p, a tumor suppressive miRNA in HCC. Moreover, our data illustrated that AC006262.5 regulated the expression of BPY2C via miR-7855-5p. Finally, we found that AC006262.5 and miR-7855-5p formed a regulatory loop. Upregulation of AC006262.5 resulted in the decreased expression of miR-7855-5p, and downregulation of miR-7855-5p further facilitated the expression of AC006262.5. Our study provides novel targets for HCC diagnosis and treatment and sheds light on the lncRNA-miRNA regulatory nexus that controls the pathology of HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanhui Yu ◽  
Lijuan Bian ◽  
Renfei Liu ◽  
Yitong Wang ◽  
Xia Xiao

Abstract Background Circular RNA hsa_circ_0061395 (circ_0061395) has been reported to accelerate the advancement of hepatocellular carcinoma (HCC). However, the regulatory mechanism by which circ_0061395 modulates the progression of HCC is unclear. Methods The morphology and size of exosomes were analyzed by transmission electron microscope (TEM) and nanoparticle-tracking analysis (NTA). Protein levels were detected by western blotting. Expression levels of circ_0061395, microRNA (miR)-877-5p, and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) mRNA were assessed by quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, invasion, migration, cell cycle progression, and apoptosis were analyzed by cell counting kit-8 (CCK-8), plate clone, transwell, or flow cytometry assays. The targeting relationship between circ_0061395 or PIK3R3 and miR-877-5p was verified using the dual-luciferase reporter and/or RNA immunoprecipitation (RIP) assays. Xenograft assay was performed to confirm the biological function of circ_0061395 in HCC. Results Circ_0061395 was upregulated in HCC tissues, serum, cells, and serum-derived exosomes. Circ_0061395 silencing decreased tumor growth in vivo, and induced cell cycle arrest, apoptosis, repressed proliferation, invasion, and migration of HCC cells in vitro. MiR-877-5p was downregulated while PIK3R3 was upregulated in HCC. Circ_0061395 regulated PIK3R3 expression via competitively binding to miR-877-5p. MiR-877-5p inhibitor overturned circ_0061395 knockdown-mediated influence on malignant behaviors of HCC cells. PIK3R3 overexpression reversed the suppressive influence of miR-877-5p mimic on malignant behaviors of HCC cells. Conclusion Circ_0061395 facilitated HCC progression via regulating the miR-877-5p/PIK3R3 axis, providing a new perspective on the advancement of HCC.


2021 ◽  
Author(s):  
Xiaoyun Ma ◽  
Meile Mo ◽  
Chao Tan ◽  
Jennifer Hui Juan Tan ◽  
Huishen Huang ◽  
...  

Abstract BackgroundLong non-coding RNAs (lncRNAs) have been proven to be involved in the development of hepatocellular carcinoma (HCC). We aimed to investigate the function of LINC01146 in HCC.MethodsThe expression of LINC01146 in HCC tissues was explored via the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and was verified using quantitative real-time polymerase chain reaction (qRT-PCR) in our HCC cohort. Kaplan-Meier analysis was used to assess the relationship between LINC01146 and the prognosis of HCC patients. Cell Counting Kit 8, colony formation assays, transwell assays, flow cytometric assays, and tumor formation models in nude mice were conducted to reveal the effects of LINC01146 on HCC cells both in vitro and in vivo. Bioinformatic methods were used to explore the possible potential pathways of LINC01146 in HCC.ResultsLINC01146 was significantly decreased in HCC tissues compared with adjacent normal tissues and it was found to be related to the clinical presentations of malignancy and the poor prognosis of HCC patients. Overexpression of LINC01146 inhibited the proliferation, migration, and invasion, while promoting the apoptosis of HCC cells in vitro. On the contrary, downregulation of LINC01146 exerted the opposite effects on HCC cells in vitro. In addition, overexpression of LINC01146 significantly inhibited tumor growth, while downregulation of LINC01146 promoted tumor growth in vivo. Furthermore, the co-expression genes of LINC01146 were mainly involved in the “metabolic pathway” and “complement and coagulation cascade pathway”. ConclusionLINC01146 expression was found to be decreased in HCC tissues and associated with the prognosis of HCC patients. It may serve as a cancer suppressor and prognostic biomarker in HCC.


2020 ◽  
Author(s):  
Hui Li ◽  
Tian Lan ◽  
Lin Xu ◽  
Hailing Liu ◽  
Jinju Wang ◽  
...  

Abstract Background Hepatocellular carcinoma is the third top cause of cancer-related mortalities worldwide. The prognosis of HCC patients remains poor due to rapid progression and high incidence of tumor recurrence. Nicastrin (NCSTN), a core subunit of γ-Secretase, has been reported to play a vital role in tumor progression. However, no study till now has revealed its role in HCC. Methods The expression of NCSTN was evaluated by immunohistochemical staining, Western blot, and quantitative real-time PCR. Cell counting kit-8, colony formation and cell cycle assays were used for evaluating cell growth in vitro. Transwell and wound-healing assays were used for evaluating cell migration and invasion capacity. Immunofluorescence, subcellular protein fractionation and co-immunoprecipitation were used for location analysis of β-catenin. The in vivo functions of NCSTN were illustrated by xenograft tumor models. Results NCSTN was dramatically overexpressed in HCC compared to normal liver tissues. Elevated NCSTN expression level was significantly correlated to worse overall and recurrence-free survival of HCC patients. Enhanced NCSTN expression promoted HCC cell growth, migration and invasion in vitro and in vivo. Mechanistic investigations showed that NCSTN induced epithelial-mesenchymal transition (EMT) process via upregulation of Zeb1. Subsequently, we revealed that NCSTN facilitated nuclear translocation of β-catenin, a positive transcriptional regulator of Zeb1. Using Notch and AKT inhibitors, we revealed that NCSTN promoted β-catenin activation through Notch1 and AKT signaling pathway. NCSTN increased AKT and GSK-3β phosphorylation by cleavage of Notch1, which decreased GSK-3β/β-catenin complex. The inactivation of GSK-3β inhibited the β-catenin degradation and promoted nuclear translocation of β-catenin to initiate transcription of Zeb1, resulting in malignant phenotype. Conclusions Our results demonstrated that NCSTN promoted HCC cell growth and metastasis via β-catenin-mediated upregulation of Zeb1 in a Notch1/AKT dependent manner, suggesting that NCSTN might serve as a potential prognostic marker and therapeutic target for HCC.


Sign in / Sign up

Export Citation Format

Share Document