scholarly journals miR-186-5p Prevents Hepatocellular Carcinoma Progression Through Targeting METTL3 to Regulate m6A-Mediated Stabilization of FSTL5

Author(s):  
DengYong Zhang ◽  
FangFang Chen ◽  
ShuoShuo Ma ◽  
YongChun Zhou ◽  
Wanliang Sun ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) processes in multi-steps which involves the sophisticated interactions of genetics, epigenetics, and transcriptional changes. According to before investigations, methyltransferase-like 3 (METTL3)-mediated m6A modification regulates the development of various cancers by regulating gene stability. However, the studies focusing on miRNA’s regulatory effect of N6-methyladenosine (m6A) modification on HCC progression are still limited. Methods: Immunochemistry (IHC) staining detected the histopathological changes in the tumor tissues. Cell Counting Kit-8 (CCK-8), clone formation, and transwell assay investigated the changes in cancer cell proliferation, invasion, and migration. The RNA m6A level was confirmed by methylated RNA immunoprecipitation. The RNA stability assay indicated the half-life (t1/2) of RNA in HCC cells. The prognosis of the indicated patients’ cohort was analyzed using the cancer genome atlas (TCGA) datasets. Luciferase report analysis was used to study the potential binding between microRNA (miRNA) and mRNA. A mice tumor transplant model was further established to study the changes in tumor progression. Results: Follistatin-like 5 (FSTL5) was found to be significantly downregulated in HCC, and it inhibited the further progression of HCC. The RNA stability analysis indicated that the mRNA t1/2 gene of HCC cells was shortened. Besides, METTL3 reduced the stability of FSTL5 mRNA in a m6A-YTH domain family 2(YTHDF2)-dependent manner. Functional experiments revealed that the downregulated METTL3 inhibited the HCC progression by up-regulating FSTL5 in vitro and in vivo. Luciferase report analysis confirmed that miR-186-5p directly targeted the METTL3. Additionally, miR-186-5p inhibited the proliferation, migration, and invasion of HCC cells by downregulating METTL3. We identified that miR-186-5p prevented the HCC progression by targeting METTL3 to regulate m6A-mediated FSTL5 stabilization. Conclusions: The miR-186-5p/METTL3/YTHDF2/FSTL5 axis perhaps point out a new direction for the targeted therapy of HCC.

2021 ◽  
Author(s):  
Xiaoyun Ma ◽  
Meile Mo ◽  
Chao Tan ◽  
Jennifer Hui Juan Tan ◽  
Huishen Huang ◽  
...  

Abstract BackgroundLong non-coding RNAs (lncRNAs) have been proven to be involved in the development of hepatocellular carcinoma (HCC). We aimed to investigate the function of LINC01146 in HCC.MethodsThe expression of LINC01146 in HCC tissues was explored via the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and was verified using quantitative real-time polymerase chain reaction (qRT-PCR) in our HCC cohort. Kaplan-Meier analysis was used to assess the relationship between LINC01146 and the prognosis of HCC patients. Cell Counting Kit 8, colony formation assays, transwell assays, flow cytometric assays, and tumor formation models in nude mice were conducted to reveal the effects of LINC01146 on HCC cells both in vitro and in vivo. Bioinformatic methods were used to explore the possible potential pathways of LINC01146 in HCC.ResultsLINC01146 was significantly decreased in HCC tissues compared with adjacent normal tissues and it was found to be related to the clinical presentations of malignancy and the poor prognosis of HCC patients. Overexpression of LINC01146 inhibited the proliferation, migration, and invasion, while promoting the apoptosis of HCC cells in vitro. On the contrary, downregulation of LINC01146 exerted the opposite effects on HCC cells in vitro. In addition, overexpression of LINC01146 significantly inhibited tumor growth, while downregulation of LINC01146 promoted tumor growth in vivo. Furthermore, the co-expression genes of LINC01146 were mainly involved in the “metabolic pathway” and “complement and coagulation cascade pathway”. ConclusionLINC01146 expression was found to be decreased in HCC tissues and associated with the prognosis of HCC patients. It may serve as a cancer suppressor and prognostic biomarker in HCC.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lian Liu ◽  
Jia-Qi Sheng ◽  
Mu-Ru Wang ◽  
Yun Gan ◽  
Xiao-Li Wu ◽  
...  

Primary cilia are organelles protruding from cell surface into environment that function in regulating cell cycle and modulating cilia-related signal. Primary ciliogenesis and autophagy play important roles in tumorigenesis. However, the functions and interactions between primary cilia and autophagy in hepatocellular carcinoma (HCC) have not been reported yet. Here, we aimed to investigate the relationship and function of primary cilia and autophagy in HCC. In vitro, we showed that serum starvation stimuli could trigger primary ciliogenesis in HCC cells. Blockage of primary ciliogenesis by IFT88 silencing enhanced the proliferation, migration, and invasion ability of HCC cells. In addition, inhibition of primary cilia could positively regulate autophagy. However, the proliferation, migration, and invasion ability which were promoted by IFT88 silencing could be partly reversed by inhibition of autophagy. In vivo, interference of primary cilia led to acceleration of tumor growth and increase of autophagic flux in xenograft HCC mouse models. Moreover, IFT88 high expression or ATG7 low expression in HCC tissues was correlated with longer survival time indicated by the Cancer Genome Atlas (TCGA) analysis. In conclusion, our study demonstrated that blockage of primary ciliogenesis by IFT88 silencing had protumor effects through induction of autophagy in HCC. These findings define a newly recognized role of primary cilia and autophagy in HCC.


2020 ◽  
Author(s):  
Hui Li ◽  
Tian Lan ◽  
Lin Xu ◽  
Hailing Liu ◽  
Jinju Wang ◽  
...  

Abstract Background Hepatocellular carcinoma is the third top cause of cancer-related mortalities worldwide. The prognosis of HCC patients remains poor due to rapid progression and high incidence of tumor recurrence. Nicastrin (NCSTN), a core subunit of γ-Secretase, has been reported to play a vital role in tumor progression. However, no study till now has revealed its role in HCC. Methods The expression of NCSTN was evaluated by immunohistochemical staining, Western blot, and quantitative real-time PCR. Cell counting kit-8, colony formation and cell cycle assays were used for evaluating cell growth in vitro. Transwell and wound-healing assays were used for evaluating cell migration and invasion capacity. Immunofluorescence, subcellular protein fractionation and co-immunoprecipitation were used for location analysis of β-catenin. The in vivo functions of NCSTN were illustrated by xenograft tumor models. Results NCSTN was dramatically overexpressed in HCC compared to normal liver tissues. Elevated NCSTN expression level was significantly correlated to worse overall and recurrence-free survival of HCC patients. Enhanced NCSTN expression promoted HCC cell growth, migration and invasion in vitro and in vivo. Mechanistic investigations showed that NCSTN induced epithelial-mesenchymal transition (EMT) process via upregulation of Zeb1. Subsequently, we revealed that NCSTN facilitated nuclear translocation of β-catenin, a positive transcriptional regulator of Zeb1. Using Notch and AKT inhibitors, we revealed that NCSTN promoted β-catenin activation through Notch1 and AKT signaling pathway. NCSTN increased AKT and GSK-3β phosphorylation by cleavage of Notch1, which decreased GSK-3β/β-catenin complex. The inactivation of GSK-3β inhibited the β-catenin degradation and promoted nuclear translocation of β-catenin to initiate transcription of Zeb1, resulting in malignant phenotype. Conclusions Our results demonstrated that NCSTN promoted HCC cell growth and metastasis via β-catenin-mediated upregulation of Zeb1 in a Notch1/AKT dependent manner, suggesting that NCSTN might serve as a potential prognostic marker and therapeutic target for HCC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
JiangSheng Zhao ◽  
GuoFeng Chen ◽  
Jingqi Li ◽  
Shiqi Liu ◽  
Quan Jin ◽  
...  

Abstract Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.


2020 ◽  
Vol 21 (2) ◽  
pp. 472 ◽  
Author(s):  
Yuri Cho ◽  
Min Ji Park ◽  
Koeun Kim ◽  
Jae-Young Park ◽  
Jihye Kim ◽  
...  

Abstract: Background: Crosstalk between tumors and their microenvironment plays a crucial role in the progression of hepatocellular carcinoma (HCC). However, there is little existing information about the key signaling molecule that modulates tumor-stroma crosstalk. Methods: Complementary DNA (cDNA) microarray analysis was performed to identify the key molecule in tumor-stroma crosstalk. Subcutaneous xenograft in vivo murine model, immunoblotting, immunofluorescence, and real-time polymerase chain reaction using HCC cells and tissues were performed. Results: The key molecule, regenerating gene protein-3A (REG3A), was most significantly enhanced when coculturing HCC cells and activated human hepatic stellate cells (HSCs) (+8.2 log) compared with monoculturing HCC cells using cDNA microarray analysis. Downregulation of REG3A using small interfering RNA significantly decreased the proliferation of HSC-cocultured HCC cells in vitro and in vivo, and enhanced deoxycholic acid-induced HCC cell apoptosis. Crosstalk-induced REG3A upregulation was modulated by platelet-derived growth factor ββ (PDGF-ββ) in p42/44-dependent manner. REG3A mRNA levels in human HCC tissues were upregulated 1.8-fold compared with non-tumor tissues and positively correlated with PDGF-ββ levels. Conclusions: REG3A/p42/44 pathway/PDGF-ββ signaling plays a significant role in hepatocarcinogenesis via tumor-stroma crosstalk. Targeting REG3A is a potential novel therapeutic target for the management of HCCs by inhibiting crosstalk between HCC cells and HSCs.


2021 ◽  
Author(s):  
Qingqing Hu ◽  
Xiaochu Hu ◽  
Yalei Zhao ◽  
Lingjian Zhang ◽  
Ya Yang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. However, the role of SGOL2 in cancer is not well understood. Methods: The mRNA and protein levels of SGOL2 and survival analysis were conducted in The Cancer Genome Atlas (TCGA) and further validated in 2 independent cohorts. Differential genes correlated with SGOL2 and mitotic arrest deficient 2 like 1 (MAD2) were obtained using LinkedOmics. Subsequently, loss-of-function and rescue assays were carried out in vitro and in vivo to assess the functions of SGOL2 in hepatic tumorigenisis. Findings: We found that SGOL2 was significantly overexpressed in HCC and predicted unfavorable overall survival in HCC patients. Next, we identified 47 differentially expressed genes positively correlated with both SGOL2 and MAD2 to be mainly involved in the cell cycle. In addition, SGOL2 downregulation suppressed the migration, invasion, proliferation, stemness and EMT of HCC cells and inhibited tumorigenesis in vivo. Furthermore, SGOL2 promoted tumor proliferation by activating MAD2-induced cell cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. We also proved that SGOL2 activated MAD2 by directly binding with MAD2. Conclusions: The results of this study showed that SGOL2 acts as an oncogene in HCC cells by directly activating MAD2 and then dysregulating the cell cycle, thereby providing a potential target for HCC patients in the future.


2019 ◽  
Vol 133 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Jing Chen ◽  
Di Wu ◽  
Yue Zhang ◽  
Yong Yang ◽  
Yunfei Duan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) play important roles in a variety of tumours; however, their biological function and clinical significance in hepatocellular carcinoma (HCC) are still unclear. In the present study, the clinical significance, biological function and regulatory mechanisms of lncRNA DCST1-AS1 in HCC were investigated. Differential lncRNAs in HCC were identified based on The Cancer Genome Atlas (TCGA) database. The biological function and mechanism of DCST1-AS1 were studied in vitro and in vivo. LncRNA DCST1-AS1 was highly expressed in HCC tissues, and the high expression of DCST1-AS1 was significantly correlated with larger tumours and shorter survival time. Moreover, DCST1-AS1 knockout significantly inhibited proliferation, promoted apoptosis and cycle arrest of HCC cells, and inhibited tumour growth in vivo. According to functional analysis, DCST1-AS1 competitively bound miR-1254, thus blocking the silencing effect of miR-1254 on the target gene Fas apoptosis inhibitor 2 (FAIM2). A novel lncRNA DCST1-AS1 that functions as an oncogene in HCC was discovered. DCST1-AS1 up-regulates the expression of FAIM2 by up-regulating the expression of miR-1254, ultimately promoting the proliferation of HCC cells. This research provides new therapeutic targets for HCC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document