scholarly journals TRIM30 modulates Interleukin-22-regulated papillary thyroid Cancer cell migration and invasion by targeting Sox17 for K48-linked Polyubiquitination

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Wei Li ◽  
Fen Li ◽  
Weiwei Lei ◽  
Zezhang Tao

Abstract Background Interleukin-22 (IL-22) belongs to the IL-10 cytokine family and is mainly produced by activated Th1 cells. Although IL-22 expression is reported to be elevated in many cancers, and increased IL-22 expression correlates with tumor progression and poor prognosis, little is known about the role of IL-22 in papillary thyroid cancer (PTC). We previously demonstrated that IL-22 promotes PTC cell migration and invasion through the microRNA-595/Sox17 axis. Methods We used qRT-PCR and western blot to determine TRIM30, Sox17 and β-catenin expression in PTC cells. Knockdown and overexpression were performed to detect the role of TRIM30/Sox17/β-catenin axis on the migration and invasion PTC cells. Co-IP were used to determine the interaction between TRIM30 and Sox17. Findings In this study, we demonstrated that IL-22 triggered tripartite-motif protein 30 (TRIM30) association with Sox17, thereby mediating K48-linked polyubiquitination of Sox17. We then demonstrated that TRIM30 was a positive regulator of IL-22-regulated migration and invasion of PTC cells. We also found that IL-22 induced the transcriptional activity of β-catenin and translocation of β-catenin from cytosol to the nucleus. Upon investigating the mechanisms behind this event, we found that IL-22 disrupted Sox17/β-catenin interactions by inducing TRIM30/Sox17 interactions, leading to promotion of β-catenin-dependent signaling. The analysis of hundreds of clinical specimens revealed that IL-22, TRIM30 and β-catenin levels were upregulated in PTC tissues compared with normal thyroid, and that their expression levels were closely correlated. Taken together, under the influence of IL-22, by sequestration of Sox17, TRIM30 promotes β-catenin-dependent signaling that promotes PTC cell proliferation.

2004 ◽  
Vol 10 (24) ◽  
pp. 8743-8750 ◽  
Author(s):  
Shailesh Singh ◽  
Udai P. Singh ◽  
Jonathan K. Stiles ◽  
William E. Grizzle ◽  
James W. Lillard

2020 ◽  
Vol 21 (11) ◽  
pp. 4044 ◽  
Author(s):  
Lobna Elkhadragy ◽  
Hadel Alsaran ◽  
Weiwen Long

Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family. It harbors a kinase domain in the N-terminus and a long C-terminus extension. The C-terminus extension comprises a conserved in ERK3 and ERK4 (C34) region and a unique C-terminus tail, which was shown to be required for the interaction of ERK3 with the cytoskeletal protein septin 7. Recent studies have elucidated the role of ERK3 signaling in promoting the motility and invasiveness of cancer cells. However, little is known about the intramolecular regulation of the enzymatic activity and cellular functions of ERK3. In this study, we investigated the role of the elongated C-terminus extension in regulating ERK3 kinase activity and its ability to promote cancer cell migration and invasion. Our study revealed that the deletion of the C-terminus tail greatly diminishes the ability of ERK3 to promote the migration and invasion of lung cancer cells. We identified two molecular mechanisms underlying this effect. Firstly, the deletion of the C-terminus tail decreases the kinase activity of ERK3 towards substrates, including the oncogenic protein steroid receptor co-activator 3 (SRC-3), an important downstream target for ERK3 signaling in cancer. Secondly, in line with the previous finding that the C-terminus tail mediates the interaction of ERK3 with septin 7, we found that the depletion of septin 7 abolished the ability of ERK3 to promote migration, indicating that septin 7 acts as a downstream effector for ERK3-induced cancer cell migration. Taken together, the findings of this study advance our understanding of the molecular regulation of ERK3 signaling by unraveling the role of the C-terminus tail in regulating ERK3 kinase activity and functions in cancer cells. These findings provide useful insights for the development of therapeutic agents targeting ERK3 signaling in cancer.


Sign in / Sign up

Export Citation Format

Share Document