scholarly journals Predicting response to pembrolizumab in metastatic melanoma by a new personalization algorithm

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Neta Tsur ◽  
Yuri Kogan ◽  
Evgenia Avizov-Khodak ◽  
Désirée Vaeth ◽  
Nils Vogler ◽  
...  

Abstract Background At present, immune checkpoint inhibitors, such as pembrolizumab, are widely used in the therapy of advanced non-resectable melanoma, as they induce more durable responses than other available treatments. However, the overall response rate does not exceed 50% and, considering the high costs and low life expectancy of nonresponding patients, there is a need to select potential responders before therapy. Our aim was to develop a new personalization algorithm which could be beneficial in the clinical setting for predicting time to disease progression under pembrolizumab treatment. Methods We developed a simple mathematical model for the interactions of an advanced melanoma tumor with both the immune system and the immunotherapy drug, pembrolizumab. We implemented the model in an algorithm which, in conjunction with clinical pretreatment data, enables prediction of the personal patient response to the drug. To develop the algorithm, we retrospectively collected clinical data of 54 patients with advanced melanoma, who had been treated by pembrolizumab, and correlated personal pretreatment measurements to the mathematical model parameters. Using the algorithm together with the longitudinal tumor burden of each patient, we identified the personal mathematical models, and simulated them to predict the patient’s time to progression. We validated the prediction capacity of the algorithm by the Leave-One-Out cross-validation methodology. Results Among the analyzed clinical parameters, the baseline tumor load, the Breslow tumor thickness, and the status of nodular melanoma were significantly correlated with the activation rate of CD8+ T cells and the net tumor growth rate. Using the measurements of these correlates to personalize the mathematical model, we predicted the time to progression of individual patients (Cohen’s κ = 0.489). Comparison of the predicted and the clinical time to progression in patients progressing during the follow-up period showed moderate accuracy (R2 = 0.505). Conclusions Our results show for the first time that a relatively simple mathematical mechanistic model, implemented in a personalization algorithm, can be personalized by clinical data, evaluated before immunotherapy onset. The algorithm, currently yielding moderately accurate predictions of individual patients’ response to pembrolizumab, can be improved by training on a larger number of patients. Algorithm validation by an independent clinical dataset will enable its use as a tool for treatment personalization.

Author(s):  
Vladimir Grinkevich ◽  

The evaluation of the mathematical model parameters of a non-linear object with a transport delay is considered in this paper. A temperature controlled stage based on a Peltier element is an identification object in the paper. Several input signal implementations are applied to the input of the identification object. The least squares method is applied for the calculation of the non-linear differential equitation parameters which describe the identification object. The least squares method is used due to its simplicity and the possibility of identification non-linear objects. The parameters values obtained in the process of identification are provided. The plots of temperature changes in the temperature control system with a controller designed based on the mathematical model of the control object obtained as a result of identification are shown. It is found that the mathematical model obtained in the process of identification may be applied to design controllers for non-linear systems, in particular for a temperature stage based on a Peltier element, and for self-tuning controllers. However, the least square method proposed in the paper cannot estimate the transport delay time. Therefore it is required to evaluate the time delay by temperature transient processes. Dynamic object identification is applied when it is required to obtain a mathematical model structure and evaluate the parameters by an input and output control object signal. Also, identification is applied for auto tuning of controllers. A mathematical model of a control object is required to design the controller which is used to provide the required accuracy and stability of control systems. Peltier elements are applied to design low-power and small- size temperature stage . Hot benches based on a Peltier element can provide the desired temperature above and below ambient temperature.


1971 ◽  
Vol 69 (3) ◽  
pp. 423-433 ◽  
Author(s):  
B. J. Hammond ◽  
D. A. J. Tyrrell

SUMMARYRecords of seven common-cold outbreaks on the island of Tristan da Cunha are compared with the corresponding time courses given by the mathematical model of Kermack & McKendrick (1927) and with an alternative model that directly involves a constant average duration of individual infection. Using computer simulation techniques the latter model is shown to be preferred and is then closely matched to the field data to obtain values for the model parameters. Consideration is then given to the intensity of epidemics predicted by the model and to the distribution of the actual epidemics relative to the theoretical epidemic threshold.


2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.


2020 ◽  
Vol 29 (11) ◽  
pp. 678-685
Author(s):  
Regina Renner

Objective: Mathematical models have the potential to provide valuable insights into complex, biochemical and biomechanical processes. Previously, we developed a mathematical model with a non-linear growth function but could only confirm the feasibility of this model in clinical trials with a small number of patients. This limited the validity of our model. To increase validity, we applied the model to a larger number of patients. Method: The mathematical model was applied to patient data from a randomised controlled trial as part of the post-evaluation of the model. In this trial, patients with venous leg ulcers were randomised for treatment with either a two-layer bandage or a four-layer bandage. Results: Data for 186 patients were analysed (two-layer bandage group, n=93; four-layer bandage group, n=93). Using the non-linear growth function, it was confirmed that the two-layer bandage was not inferior to the four-layer bandage. In addition, the mathematical model calculated individual wound healing trajectories and mean wound healing trajectories for both bandage systems. By extrapolating to t→∞, the two-layer bandage had a marginal benefit and resulted in a persistent wound area that was 7% of the initial wound area compared with 17% for the four-layer bandage. Conclusion: This analysis supported the previously performed statistical analysis, and allowed us to obtain details of the treated study population that may help in non-inferiority trials via extrapolation. It also provided new insights into the wound healing process by generating wound healing trajectories.


2015 ◽  
Vol 22 (3) ◽  
pp. 79-86 ◽  
Author(s):  
Дзасохов ◽  
Aleksey Dzasokhov ◽  
Хромушин ◽  
Viktor Khromushin ◽  
Китанина ◽  
...  

Mathematical device of algebraic model of constructive logic has been used for many years for multivariate analysis in medicine and biology most often to identify causal relationships. This mathematical apparatus can be used for more complex analysis schemes for the purpose of determining the contingent of patients who require this method of treatment. The proposed method is a two-step analysis using algebraic model of constructive logic with different specified purposes and subsequent analysis of the resulting final components of the mathematical model. As a result, it is possible to identify restrictions and to quantify the number of patients who need to analyzed method of treatment. The proposed method is explained by an analytical study of hyperbaric oxygen therapy in oncological pathology. Analysis of the results revealed 7,87-39,35% of patients requiring hyperbaric oxygen therapy. The authors revealed the restrictions presented resulting final components of the mathematical model in the form of limits of detection of the combined factors. The equity analysis of values of the resulting components of the mathematical model is associated with the need to calculate the maximum possible total power of the resulting components of the mathematical model, used in expert systems.


2012 ◽  
Vol 220-223 ◽  
pp. 952-957
Author(s):  
Chen Liu ◽  
Xiao Yan Liu

From the view of engineering, based on expatiating the features of systems biology, the paper discusses the workflows and the research emphasis of systems biology. It also explains how to model and analyze the dynamic process of signal transmitting network for a biological system by an example. Based on the complexity and uncertainty of the mathematical model, the right methods are chosen to realize the effective estimation of state variables and model parameters for the biochemical pathway.


Author(s):  
Aleksandra Sander ◽  
Jasna Prlić Kardum ◽  
Antun Glasnović

2013 ◽  
Vol 680 ◽  
pp. 479-483
Author(s):  
Pei Ying Li ◽  
Yu Tian Pan

In order to meet the demands of practical, convenient and quick charge requirements, a mathematical model of a certain type of vehicle starting lead-acid battery is established. Using the method of circuit analysis, the model parameters are identified by the known test data. In addition, battery charge model is simulated in each charge stage using the intelligent three-stage charge method, simulation waveform and test waveform fit very well, absolute errors between them reach to 10-6. Simulation results show that the mathematical model and its analysis method is proper for the charge characteristics of vehicle starting lead-acid battery. This has a good guidance to design intelligent charger and extend the battery life.


Author(s):  
S. Yu Martynov ◽  
V. L. Poliakov

Abstract The mathematical model of physicochemical iron removal from groundwater was developed. It consists of three interrelated compartments. The results of the experimental research provide information in support of the first two compartments of the mathematical model. The dependencies for the concentrations of the adsorbed ferrous iron and deposited hydroxide concentrations are obtained as a result of the exact solution of the system of the mass transfer equations for two forms of iron in relation to the inlet surface of the bed. An analysis of the experimental data of the dynamics of the deposit accumulation in a small bed sample was made, using a special application that allowed to select the values of the kinetic coefficients and other model parameters based on these dependencies. We evaluated the autocatalytic effect on the dynamics of iron ferrous and ferric forms. The verification of the mathematical model was carried out involving the experimental data obtained under laboratory and industrial conditions.


2019 ◽  
Author(s):  
Kazuaki Amikura ◽  
Hiroshi Ito

Reproducible pattern is a key characteristic of organisms. Many developmental patterns are known that it is orchestrated by diffusion of the factors. Herein, we reported a novel patterning that seems to be controlled by diffusion factors. Although it looks like the prickles randomly emerge on the stem of rose, we deciphered patterns for the position of prickles with statistical data and proposed a mathematical model to explain the process via which the pattern emerged. By changing the model parameters, we reproduce another pattern on other plant species. This finding indicates that the patterns between many species are organized by similar systems. Moreover, although the pattern of organisms is often linked to its function, we consider the spatial pattern of prickles may have a function to play the role of prickles effectively. Further studies will clarify the role of prickles and reveal the entity of diffusive factors.


Sign in / Sign up

Export Citation Format

Share Document