scholarly journals MBTPS2, a membrane bound protease, underlying several distinct skin and bone disorders

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Natarin Caengprasath ◽  
Thanakorn Theerapanon ◽  
Thantrira Porntaveetus ◽  
Vorasuk Shotelersuk

AbstractThe MBTPS2 gene on the X-chromosome encodes the membrane-bound transcription factor protease, site-2 (MBTPS2) or site-2 protease (S2P) which cleaves and activates several signaling and regulatory proteins from the membrane. The MBTPS2 is critical for a myriad of cellular processes, ranging from the regulation of cholesterol homeostasis to unfolded protein responses. While its functional role has become much clearer in the recent years, how mutations in the MBTPS2 gene lead to several human disorders with different phenotypes including Ichthyosis Follicularis, Atrichia and Photophobia syndrome (IFAP) with or without BRESHECK syndrome, Keratosis Follicularis Spinulosa Decalvans (KFSD), Olmsted syndrome, and Osteogenesis Imperfecta type XIX remains obscure. This review presents the biological role of MBTPS2 in development, summarizes its mutations and implicated disorders, and discusses outstanding unanswered questions.

1972 ◽  
Vol 50 (8) ◽  
pp. 1743-1748 ◽  
Author(s):  
Douglas P. Maxwell ◽  
Paul H. Williams ◽  
Martha D. Maxwell

The possible functional role of vesicles and crystal-containing microbodies in the production of oxalate, endopolygalacturonase, or cellulase by Sclerotinia sclerotiorum was investigated. The presence of multivesicular bodies in hyphal tips was not correlated with secretion or production of oxalate or these extracellular hydrolases. More crystal-containing microbodies were present in hyphal tips grown on media which supported greater extracellular enzyme production. No correlation existed between numbers of crystal-containing microbodies in hyphal tips and production of oxalate. Numerous membrane-bound vesicles (0.09–0.18 µm diam) were associated with tips grown on a D-glucose–Na succinate medium which supported high production of oxalate. The general ultrastructural organization of these hyphal tips was similar to that reported for other ascomycetes. Differences in numbers and distributions of organelles were observed between hyphal tips and older hyphae as well as between hyphal tips grown on the different carbon sources.


1977 ◽  
Vol 55 (2) ◽  
pp. 222-225 ◽  
Author(s):  
E. S. Martin ◽  
G. Larbalestier

Epidermal chloroplasts of Taraxacum officinale agg. contain large electron-dense inclusion bodies enclosed by a single membrane. These inclusion bodies were not observed in mesophyll chloroplasts. The origin and functional role of these structures is discussed.


2010 ◽  
Vol 98 (3) ◽  
pp. 569a
Author(s):  
Torben Broemstrup ◽  
Nathalie Reuter

Open Biology ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 200054 ◽  
Author(s):  
Ana Talamillo ◽  
Leiore Ajuria ◽  
Marco Grillo ◽  
Orhi Barroso-Gomila ◽  
Ugo Mayor ◽  
...  

SUMOylation—protein modification by the small ubiquitin-related modifier (SUMO)—affects several cellular processes by modulating the activity, stability, interactions or subcellular localization of a variety of substrates. SUMO modification is involved in most cellular processes required for the maintenance of metabolic homeostasis. Cholesterol is one of the main lipids required to preserve the correct cellular function, contributing to the composition of the plasma membrane and participating in transmembrane receptor signalling. Besides these functions, cholesterol is required for the synthesis of steroid hormones, bile acids, oxysterols and vitamin D. Cholesterol levels need to be tightly regulated: in excess, it is toxic to the cell, and the disruption of its homeostasis is associated with various disorders like atherosclerosis and cardiovascular diseases. This review focuses on the role of SUMO in the regulation of proteins involved in the metabolism of cholesterol.


2004 ◽  
Vol 13 (3) ◽  
pp. 9-10
Author(s):  
Michael Yeh ◽  
Amy L Cole ◽  
Jenny Choi ◽  
Jian-Hua Qiao ◽  
Michael Fishbein ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1709
Author(s):  
Abrahán Ramírez-González ◽  
Joaquín Manzo-Merino ◽  
Carla Olbia Contreras-Ochoa ◽  
Margarita Bahena-Román ◽  
José Manasés Aguilar-Villaseñor ◽  
...  

Human akna encodes an AT-hook transcription factor whose expression participates in various cellular processes. We conducted a scoping review on the literature regarding the functional role of AKNA according to the evidence found in human and in vivo and in vitro models, stringently following the “PRISMA-ScR” statement recommendations. Methods: We undertook an independent PubMed literature search using the following search terms, AKNA OR AKNA ADJ gene OR AKNA protein, human OR AKNA ADJ functions. Observational and experimental articles were considered. The selected studies were categorized using a pre-determined data extraction form. A narrative summary of the evidence was produced. Results: AKNA modulates the expression of CD40 and CD40L genes in immune system cells. It is a negative regulator of inflammatory processes as evidenced by knockout mouse models and observational studies for several autoimmune and inflammatory diseases. Furthermore, AKNA contributes to the de-regulation of the immune system in cancer, and it has been proposed as a susceptibility genetic factor and biomarker in CC, GC, and HNSCC. Finally, AKNA regulates neurogenesis by destabilizing the microtubules dynamics. Conclusion: Our results provide evidence for the role of AKNA in various cellular processes, including immune response, inflammation, development, cancer, autoimmunity, and neurogenesis.


2020 ◽  
Vol 13 (4) ◽  
Author(s):  
Saumya Das ◽  
Ravi Shah ◽  
Stefanie Dimmeler ◽  
Jane E. Freedman ◽  
Christopher Holley ◽  
...  

Background: The discovery that much of the non–protein-coding genome is transcribed and plays a diverse functional role in fundamental cellular processes has led to an explosion in the development of tools and technologies to investigate the role of these noncoding RNAs in cardiovascular health. Furthermore, identifying noncoding RNAs for targeted therapeutics to treat cardiovascular disease is an emerging area of research. The purpose of this statement is to review existing literature, offer guidance on tools and technologies currently available to study noncoding RNAs, and identify areas of unmet need. Methods: The writing group used systematic literature reviews (including MEDLINE, Web of Science through 2018), expert opinion/statements, analyses of databases and computational tools/algorithms, and review of current clinical trials to provide a broad consensus on the current state of the art in noncoding RNA in cardiovascular disease. Results: Significant progress has been made since the initial studies focusing on the role of miRNAs (microRNAs) in cardiovascular development and disease. Notably, recent progress on understanding the role of novel types of noncoding small RNAs such as snoRNAs (small nucleolar RNAs), tRNA (transfer RNA) fragments, and Y-RNAs in cellular processes has revealed a noncanonical function for many of these molecules. Similarly, the identification of long noncoding RNAs that appear to play an important role in cardiovascular disease processes, coupled with the development of tools to characterize their interacting partners, has led to significant mechanistic insight. Finally, recent work has characterized the unique role of extracellular RNAs in mediating intercellular communication and their potential role as biomarkers. Conclusions: The rapid expansion of tools and pipelines for isolating, measuring, and annotating these entities suggests that caution in interpreting results is warranted until these methodologies are rigorously validated. Most investigators have focused on investigating the functional role of single RNA entities, but studies suggest complex interaction between different RNA molecules. The use of network approaches and advanced computational tools to understand the interaction of different noncoding RNA species to mediate a particular phenotype may be required to fully comprehend the function of noncoding RNAs in mediating disease phenotypes.


2020 ◽  
Author(s):  
Peter Shyu ◽  
Wei Sheng Yap ◽  
Maria L. Gaspar ◽  
Stephen A. Jesch ◽  
Charlie Marvalim ◽  
...  

Lipid droplets (LDs) have long been regarded as inert cytoplasmic organelles with the primary function of housing excess intracellular lipids. More recently, LDs have been strongly implicated in conditions of lipid and protein dysregulation. The fat storage inducing transmembrane (FIT) family of proteins comprises of evolutionarily conserved endoplasmic reticulum (ER)-resident proteins that have been reported to induce LD formation. Here, we establish a model system to study the role of S. cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in proteostasis and stress response pathways. While LD biogenesis and basal ER stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1. Devoid of a functional UPR, scs3 mutants exhibited accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting a UPR-dependent compensatory mechanism for LD maturation. Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, the absence of the ScFIT proteins results in the downregulation of the closely-related Heat Shock Response (HSR) pathway. In line with this observation, global protein ubiquitination and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFIT cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Taken together, these suggest that ScFIT proteins may modulate proteostasis and stress response pathways with lipid metabolism at the interface between the two cellular processes.


Sign in / Sign up

Export Citation Format

Share Document